
File Systems: Interface

• As mentioned previously, operating systems offer an 
abstraction to user data in the form of files

• A file is a logical storage unit — they do not appear as 
such on storage devices, but whatever is on these 
devices is presented to us by the OS as files

• In addition to the data that they hold, files 
also contain attributes of their own, and have 
certain operations associated with them — 
thus, in UML, a file may be (partially) modeled 
as shown on the right 

File

name
identifier
type
location
size
protection
timestamp
user/owner
data
create
open
read
write
close

File Management Issues

• While it is technically possible to operate on any file at 
any time, it is not generally practical; instead, many file 
operations must be “book-ended” by open and close 
system calls

• The open call allows the operating system to track the 
set of files that are actively being used by processes

• File access and sharing by multiple processes can also 
be an issue, so an operating system may provide a 
variety of locks that help coordinate and protect files 
among these processes



File Types

• Data comes in many forms and formats (documents, 
images, audio, video, executables, source code…), so 
we attach a notion of type to a file

• By far the most common typing mechanism is really a 
“type hint” — the filename extension

• Other approaches include magic numbers in Unix, type 
and creator codes in the original Mac OS, and MIME on 
the Internet and BeOS

• Mac OS X has introduced uniform type identifiers (UTIs) 
— good potential, but yet to be proven

File Structure

• An OS may also choose to support known file 
structures — predefined ways for what is in a file and 
how it is organized

• Generally, user processes manage this; only a handful of 
file structures need to be truly known by the OS:

Executables, libraries, and other files containing code

Text vs. binary: text implies some conventions, such as 
newlines and character mappings (ASCII, Unicode)

• Original Mac OS used separate data and resource forks



Access Methods

• Two primary approaches have evolved for accessing 
the information in a file:

Sequential access views a file as a linear stream, to be 
accessed from beginning to end

Direct access, a.k.a. random or relative access, assumes 
that files consist of fixed-length logical records, and 
allows immediate movement to any record in the file

• Other methods (e.g., indexed access; Java’s “stream 
zoo”) are composites of sequential/direct access

Directory Structure

• Collections of files are typically gathered into 
directories — in design-pattern terms, directories and 
files may be viewed as forming a composite pattern:

• Directories typically hold many of the attributes 
associated with a file; internally, they also hold a 
reference to the file’s data on a device

Directory

File



Types of Directories

• Single- or two-level directories are just that — they do 
not allow arbitrarily deep directory structures

• Tree-structured directories allow directories within 
directories, potentially of unlimited depth

The top of the tree is typically called the root

Unix presents a single tree, regardless of the 
underlying number of devices; Windows presents 
multiple trees, each rooted at a device (thus it can be 
viewed as having an “extended” two-level structure)

• Acyclic-graph directories allow multiple directories to 
refer to a single file — specifics vary by OS

Windows uses a special .LNK file (a “shortcut”) that 
encodes assorted information about a file

Unix has 2 techniques: symbolic links use only a file’s 
path, while a hard link is an independent directory 
entry that points to the same underlying data

Mac OS X also supports an alias file that encodes 
additional data for finding the target file in case it is 
moved or renamed

• When file reference cycles are allowed, we have a 
general graph directory



• Note again that files and directories are logical 
structures — they are meant to abstract out the 
concrete reality of storage devices and media

• Mounting is the act of “connecting” different storage 
devices to the logical directory structure

• Unix (including Linux, Mac OS X) subsume the devices 
into a single logical directory; Windows uses a separate 
drive letter, so devices are not path-transparent

• Mounting on a non-empty directory requires a design 
decision: prohibit or obscure?

File-System Mounting

File Sharing

• Sharing across users — traditional approach is to 
assign an owner and group to a file; owners can do 
anything, while group members can perform a subset

• Sharing across computers (on a network) — two main 
paradigms; may be anonymous or authenticated

Manual transfer: ftp (file transfer), rcp (remote copy), scp (secure copy), http

Remote mount: NFS, smb (a.k.a. CIFS), afp (a.k.a. AppleShare)

• Failure modes: remote file access is subject to more 
possible errors than local devices (network partition, 
server crash), so error-handling must be more robust



Consistency Semantics

• Consistency semantics refers to how concurrent file 
modifications by multiple users should behave; in the 
general case, shared file access can be viewed as a 
critical-section problem, but is generally not solved in 
that way due to performance reasons

• In Unix, a file is a mutually-exclusive resource; writes 
are serialized (possibly causing processes to wait), and 
changes are visible right away to other processes

• The Andrew file system (AFS) allows for multiple 
writes, invisible to other processes until a file is closed

File Protection

• File systems also provide some form of protection — 
the prevention of “improper access” to files

• General approach is to define the operations to be 
controlled (read, write, execute, etc.), then specify 
which users can perform which operations — this 
ranges from traditional Unix owner/group/all 
permissions to variable-sized lists of user/operation 
rules, called access control lists or ACLs

• The brave new world of malware adds the need to 
protect a user from some of his or her own files!


