
Memory Management:
Virtual Memory

• So far, we have been loading entire processes into 
memory: process gets started, process asks for 
whatever memory it needs, then memory is allocated

• Paging and segmentation break up a process’s memory 
space so that it doesn’t have to be physically 
contiguous — this addresses external fragmentation 
plus adds other benefits (sharing, protection)

• But does an entire process’s address space have to be 
in memory all the time?  The answer is no, and as a 
result, we can have virtual memory

Demand Paging

• Note how a process’s logical address space (the 
addresses that it sees and uses) is already cleanly 
separated from its physical address space

• Instead of loading an entire process from secondary 
storage into physical memory, we can load it only as 
pages are needed by the code — this is demand paging

• Pages of the logical address space that are never 
accessed during a process’s run (rarely used routines, 
overallocated data structures, etc.) are never loaded 
— we save memory and I/O



Demand Paging Basics

• The valid/invalid bit in a process’s page table gains new 
meaning: an invalid value may now also indicate that a 
page is not yet in main memory, in addition to possibly 
being outside of the process’s memory space

• Start with a certain number of pages loaded into 
memory (or none if we are doing pure demand paging)

• When the CPU tries to touch a memory address 
belonging to an invalid page (including the address of 
the instruction itself), a page-fault trap is triggered

• A typical page-fault handler then follows this routine:

Verify the validity of the memory address

Terminate the process if the address was invalid

Allocate a free physical memory frame

Schedule a disk read — theoretically, the CPU can do 
other things at this point while the I/O does its job

Update the page table when the page arrives

Restart the interrupted instruction

• The principle of locality, specifically locality of reference, 
means that for certain periods, a process will have all 
of the pages that it needs and thus stays completely 
memory resident for a while



Demand Paging Performance

• With demand paging, average memory access times 
are now modified by how frequently we get page faults

• If ma is pure main memory access time, pf is access 
time with a page fault, and p is the probability of a 
memory access resulting in a page fault, we get:

(1 – p)ma + (p)pf = effective access time

• If you consider that page fault time, which involves 
secondary storage I/O, can be 100–1000x longer than 
main memory access, you see how p is a huge deal!

Copy-on-Write

• One technique that decreases the page-fault rate is 
copy-on-write, and it takes advantage of how child 
process frequently start out as copies of their parents

• When a child process is forked from a parent, it can 
continue to use the same frames to which the parent’s 
pages are mapped

• However, these pages are marked as “copy-on-write,” 
meaning that, once the child process tries to modify its 
“copy” of the page, that’s when the page is duplicated



Page Replacement

• Note how demand paging helps increase the degree of 
multiprogramming — since we no longer allocate a 
process’s entire address space at a single time, we can 
potentially run more processes concurrently

• Thus, an OS may work like an airline — in a way, it 
“overbooks” the available memory on the assumption 
that the running processes won’t want all of their 
possible memory at a single moment

• However, this may happen — and so we need to figure 
out an approach for page replacement

Page Replacement Basics

• Page replacement is needed when we get a page fault 
but don’t have a free frame for the incoming page; we 
therefore choose a victim frame to overwrite

• Of course, the victim frame may contain changed 
memory, so we need to write that to disk (a page-out)

• We may therefore have not one but two I/O 
operations during page replacement — a page-out of 
the victim frame and a page-in of the demanded page

• A modify or dirty bit may save us a page-out, since we 
won’t need to write a frame that hasn’t been changed



Page-Replacement Algorithms

• A page-replacement algorithm determines how we 
decide on the victim frame

• To compare them, we use one or more reference 
strings — sequences of memory accesses that 
represent addresses as they are needed by processes

• We also need an initial available frame count — how 
much physical memory do we have in the first place

• When we need to page-in and don’t have a free frame, 
we use the page-replacement algorithm to pick the 
victim, perform the replacement, then move on

• Like process scheduling, page-replacement algorithms 
range from very straightforward to a theoretical 
ideal…which can only be approximated in real systems

• We start with first-in, first-out (FIFO) page replacement 
— or, “always replace the oldest page”

Conceptually simple, easy to code

But it leads to Belady’s anomaly — with certain 
reference strings, we may have more page faults as we 
increase the number of available frames!

• There is a theoretically optimal page-replacement 
algorithm (a.k.a. OPT): “Replace the page that won’t be 
used for the longest period of time” — but, as with 
SJF, this involves future knowledge that we can’t have



• LRU tries to approximate OPT by replacing the page 
that hasn’t been used for the longest time, instead of 
the page that won’t be used

• With LRU, we thus need to store a value for each page 
indicating when it was last used — two options:

Counters: Increment for every memory reference, and write the current value into each 
page; requires a search for the page with the lowest value

Stack: Push pages as they are referenced (possibly moving them from the middle of the 
stack); no search required, just grab from the bottom of the stack

• LRU does not exhibit Belady’s anomaly

Least-Recently-Used (LRU) 
Page Replacement

• Unfortunately, LRU requires significant hardware 
support — counter updates or stack manipulations 
have to take place on every memory reference, and so 
would use too much CPU if done in software

• Thus, we have a family of LRU-approximation page 
replacement algorithms, with simpler hardware needs 
— specifically, a single reference bit set on page access:

Additional-reference-bits shifts the reference bit on preset timer interrupts, resulting in a 
usage-per-time-period record…lowest number loses

If we can’t even afford multiple reference bits, second-chance is essentially FIFO with a 
reference-bit check; if it is set, then we clear the bit and give the page a “second chance”

But wait, there’s more…there’s also enhanced second-chance, which adds the modify or dirty 
bit (already available to save on page-out costs) to the victim selection criteria — the best 
victim is the FIFO page that is neither recently used nor modified



• Some page replacement algorithms uses reference 
counts — how many times a page has been accessed

Least-frequently-used (LFU) replaces the page with the smallest reference count; count can 
decay over time so that early-activity pages (such as initialization) go away

Most-frequently-used (MFU) uses a converse premise, that LFU pages may actually be more 
likely to be used next because “they just got here”

• Page-buffering algorithms aren’t replacement algorithms 
in themselves, but try to improve performance

Memory pools do an intermediate “page-out” to main memory, allowing processes to 
restart sooner or even re-read that page quickly if it’s needed soon enough

Periodic write-out sends modified pages to disk when there is time, saving on page-out later 
on if that page is chosen as a victim

Even More Page
Replacement Algorithms

Application Behavior and 
Page Replacement

• The wrinkle with page replacement algorithms is that 
specific performance really depends on the nature of 
an application — for transparency, we have no choice 
but to have “one-size-fits-all”

• But sometimes, it’s worthwhile to lose the 
transparency in exchange for better performance — 
e.g., database management systems, large simulations

• To accommodate this, some OSes provide for a raw 
disk, which an application can read/write directly 
without OS abstractions



Frame Allocation

• The second major issue in virtual memory is frame 
allocation — how many physical frames should each 
process get in the first place?

• Some factors to consider:

Obviously the total number of allocated frames cannot exceed physical memory (page 
sharing helps this a bit, but that hard maximum still exists)

Since an instruction may require multiple accesses (e.g., load an address that is 
dereferenced from another address — potentially 3 frames, one for the instruction itself 
and two for the address information), processes must also have a minimum allocation

• Frame allocation algorithms distribute frames in a way 
that conforms to these constraints

Frame Allocation Algorithms

• Equal allocation — Split the available frames evenly 
across all processes

• Proportional allocation — Allocate frames proportionally 
to a process’s size

• With either algorithm, incoming and outgoing 
processes may dynamically change frame allocations

• There is also an interaction with page replacement: are 
victim frames chosen from all frames (global) vs. just 
that process (local) — allocation may diverge from the 
specific algorithm with global replacement



Thrashing

• As mentioned, virtual memory allows us to increase 
multiprogramming by letting us getting away with 
“overbooking” physical memory…most of the time

• Sometimes, processes do exceed their current frame 
allocation, and so repeatedly page-fault

• Ironically, this may be viewed as a decrease in CPU 
utilization, causing the OS to schedule even more 
processes — making things spiral downward

• This behavior has (IMHO) one of the most aptly-
named terms in computer science — thrashing

Working-Set Model

• The ultimate cause of thrashing is inadequate frame 
allocation — a process needs to access memory that 
occupies more pages than it has frames

• Fortunately, the principle of locality presents a possible 
solution: processes tend to spend blocks of time 
“within” the same set of pages (a locality), moving from 
one set to another over time

• As long as a process has as many frames as needed by 
the current locality, then it won’t thrash; from this 
principle, we derive a working-set model



Working-Set Model Basics

• We define a parameter, ! — the working-set window

• By looking at the most recent ! references, we can 
approximate the current locality; the number of pages 
in the window sets the process’s frame allocation

• Two tricks to this approach:

! must be the right size, neither too large nor small

Implementation — tracking the window for every 
reference can be unwieldy; we can just approximate 
using reference bits, a la LRU approximation

Page-Fault Frequency

• An alternative to the working-set model is a page-fault 
frequency strategy — just track a process’s page-fault 
rate, and if it gets too high, increase its frame 
allocation; if it gets too low, then decrease it

• We just need to choose good upper and lower bounds

• Appealing for its directness — in the end, after all, 
thrashing is all about excessive page faults

• Working sets and page-fault frequency are related: 
processes page-fault more when changing working sets



Memory-Mapped Files

• Virtual memory techniques have another related but 
distinct application — memory-mapped files

• When a file is memory-mapped, its disk blocks are 
associated with pages in a process’s address space, thus 
making file I/O look like memory accesses

• Memory mapping may be explicit (e.g., mmap() in BSD, 
MapViewOfFile() in Win32) or implicit (e.g., in Solaris, all 
file I/O is memory-mapped)

• Can be used for, but not necessarily the only way, to 
implement shared memory

Memory-Mapped I/O

• The “make-it-look-like-memory-access” approach also 
applies to other I/O in addition to files — this is 
memory-mapped I/O

• Same strategy: direct certain memory addresses to I/O 
devices — a process just reads from/writes to these 
addresses, and the CPU sends that data to the device 
behind the scenes

• Particularly useful for fast-response devices, such as a 
graphics card: “drawing” on a screen is actually I/O, but 
looks like memory transfers in code



Kernel Memory Allocation

• Memory used by the kernel tends to require a 
different strategy from user process memory:

We really need to minimize fragmentation, particularly 
if kernel memory is not paged

Because the kernel communicates directly with other 
hardware, sometimes physical contiguity is required

• A simple approach is the buddy system — keep dividing 
memory by two until you get the largest power-of-2 
that can accommodate a memory request…simple, but 
still prone to internal fragmentation

Slab Allocation

• The slab allocation strategy eliminates fragmentation; it 
takes advantage of the fact that it knows about the data 
structures needed by the kernel

• Contiguous memory is divided into slabs, which are 
then assigned to caches

• Caches correspond to and are “sized-to-fit” a specific 
kernel data structure (e.g., PCBs, semaphores, etc.)

• Memory-efficient and fast: size-to-fit ensures no 
wasted memory, and preallocation enables rapid reuse



Miscellaneous Virtual
Memory Issues

Page replacement and frame allocation are the primary 
issues in virtual memory management, but there are many 
others!— as always, the devil is in the details

• Prepaging: Bring more than one page in at a time, such 
as at startup and/or resuming after suspension (e.g., 
page-in the entire working-set of a suspended process)

• Page size: We’ve seen how some CPUs offer a choice 
of page sizes; so, we can potentially choose between 
improving on fragmentation and locality (small pages) 
or minimizing table size and I/O (large pages)

• TLB reach: Like a TLB’s hit ratio, TLB reach is related to 
how many entries it can hold — it is the amount of 
memory that can be “seen” by the TLB, or number of 
entries * page size — the larger the TLB reach, the 
more likely that a process’s working set is in the TLB 

• Inverted page tables: While we can’t completely do 
without external page tables, having an inverted page 
table may reduce second-order page faults

• Program structure: Virtual memory is transparent in 
principle, but programs may perform very differently 
with a slight change; good compilers will help here

• I/O interlock: We need to make sure that we don’t page 
out frames that are waiting on I/O devices; either 
never do I/O in user space, or allow locking of pages



• Windows XP

Demand paging with clustering — page-in adjacent pages to the requested page

Designated working-set minimum and maximum (typically 50 and 345 pages, respectively) 
with automatic working-set trimming when free memory starts running low

Clock page-replacement algorithm on single-processor x86, FIFO variant on others

• Solaris

Maintains a free-page pool with a threshold, lotsfree, usually 1/64 of physical memory

When pool goes below lotsfree, a pageout process runs with a second-chance algorithm 
variant; starts at 4 times per second, then goes to 100 times a second if free memory falls 
below another threshold, desfree

A final threshold cross, minfree, results in pageout with every memory access

Real-World Specifics

• Linux

Four kernel threads — kscand, kswapd, kupdated, and bdflush — track the state of a page; 
counter-based LRU provided by kscand

Five states: free, active, inactive dirty, inactive laundered, inactive clean; a page becomes inactive 
if its counter goes to zero, and enters laundered state while its contents are still being 
paged out to disk

Virtual memory behavior is highly tunable through assorted parameters (e.g., 
bdflush.age_buffer determines how old a buffer may be before flushing to disk; 
vm.max_map_count sets the maximum number of virtual memory areas a process can 
have, effectively limiting its memory allocation regardless of overall available memory)

• Mac OS X

Implements copy-on-write, locks (“wired” memory in OS X terms), and LRU variant

Has a special subsystem called Task Working Set (TWS) that tracks per-user, per-process 
fault behavior in on-disk files (/var/vm/app_profile); helps in pre-paging and allocating disk 
blocks — working sets are kept contiguous on disk to minimize seek time

Has a secure virtual memory feature that encrypts on-disk swap files

64-bit processes have 18 exabytes of address space (1 exabyte " 260)


