
Concurrency: Definitions

• Concurrency: two or more execution contexts that may be active

at the same time

• Parallelism: concurrent execution contexts that are actually

running at the same time

– This distinguishes between multiprocessor systems where multiple CPUs

are working at the same time, and a single-CPU system with pre-emptive

multitasking

– Programming techniques are the same for any system with concurrency,

regardless of whether the concurrency is truly parallel or not

• Thread: specific term for the aforementioned execution contexts

• Process: an operating system-level execution context, which may

correspond to one or more language-level threads

More Definitions

• Heavyweight process: a process with its own address space

• Lightweight process: a process which shares an address space

with other process

– Note that these are in an operating systems context; the mapping between

a language abstraction for a task and the corresponding operating system

resources is a language implementation issue

• Task: a well-defined unit of work that a program needs to

perform, typically in one thread

– A single thread can perform multiple tasks

– Multiple threads can share a “bag of tasks” — no strict mapping between a

task and a thread; it’s just a matter of who is available to do more work

• Different systems may have different definitions!



First Cut: Coroutines

• Coroutines have some of the feel of concurrency, but are

semantically quite distinct

• Coroutines are multiple execution contexts — typically packaged

as subroutines — across which a program can switch

– Not concurrent because only one of them can be considered “active” at

any given time

– The trick is that coroutines can transfer control to each other, picking up

where they left off

– Think of coroutines as subroutines that transfer instead of return

• Implemented in Simula and Modula-2

• Typical applications of coroutines:

– Implementation of iterators

– Discrete event simulation

On to Concurrency

• Concurrent programs remove the explicit notion of a coroutine

transfer — you program under the assumption that multiple tasks

are truly occurring at the same time

• More definitions:

– Race condition: a situation where multiple tasks affect the same resources

(variables, memory, files) such that a program’s result will change

depending on which task gets to the resource first

• Race conditions aren’t always bad, but it’s good to know when they are

happening

– Deadlock: a situation where multiple tasks need to wait for the same

resources to be available, thus resulting in none of these tasks being able

to proceed



Key Concurrency Issues

• The issues of race conditions and deadlocks motivates the two

primary issues in concurrent programming:

– Communication: how do multiple threads send/receive information

to/from each other?

– Synchronization: when dependencies across threads occur (e.g. race

conditions), how does a program specify the relative order in which

threads should do their work?

• Two forms of communication in use today:

– Shared memory: multiple threads can “see” the same

variables/memory/data, and read/write as needed

– Message passing: multiple threads have completely isolated state, and

must explicitly communicate state to each other (through “messages”)

Concurrency and Architecture

• While concurrent programming and computer system

architecture are distinct topics, they share a certain “symbiosis”

– Some concurrent programming implementation issues are influenced

significantly by the target architecture

– Theoretically, you can still implement any concurrent programming

approach on any architecture, but in reality some approaches and

architectures are just “made for each other”

• Architectures of note:

– Vector architectures: hardware that can operate on huge amounts of data at

the same time (pioneered by Cray, evident in PCs as “Pentium MMX” and

“PowerPC Velocity Engine” buzzwords

– The Flynn classification of multiprocessors: single/multiple instruction

streams, single/multiple data stores (SISD, SIMD, MISD, MIMD)



SISD

• This is the classic Von Neumann architecture

processor memory

instructions

data

SIMD

• Each processor has its own data set.

processor data memory

processor

processor

processor

data memory

data memory

data memory

instruction

memory



MISD

• No MISD machines have been constructed thus far.

processor

processor

processor

instruction

memory

instruction

memory

instruction

memory

data memory

MIMD

• Current model for parallel architectures — note how it is little

different from a network of computers

processor memory

instructions

data

processor memory

instructions

data

processor memory

instructions

data

processor memory

instructions

data



Centralized MIMD = Shared Memory

processor

cache

processor

cache

processor

cache

processor

cache

main memory

Distributed MIMD = Message Passing

processor

memory

processor

memory

processor

memory

processor

memory

interconnection network



Implementing Concurrency in a Language

• Language vs. library

• Language approach: provides compiler support, better integration

with other language concepts such as type checking, scoping,

exceptions

• Library approach: allows addition of concurrency control to

existing languages; must be in the context of language constructs

– Posix pthreads libray

– Java Thread class (there is internal JVM support, but the presentation is as

a class with methods — no concurrency-specific syntax)

– Remote procedure call: wrapping messages inside stub subroutines

Creating Threads

• co-begin: multiple parallel statements define threads— SR, Algol

68, Occam

• parallel loops: parallel execution of loop iterations (one thread

per loop iteration) — SR, Occam, some Fortran dialects

• launch-at-elaboration: subroutine-like syntax executes a thread

upon declaration — SR, Ada, others

• fork/join: explicit thread “launching” at any time; join waits for a

previously forked thread — SR, Ada, Modula-3, Java

• implicit receipt: automatic thread creation in response to a

message from another thread — SR, RPC-capable systems

• early reply: created thread “returns” an initial result, but

continues execution — SR, Java (separation of Thread creation

from execution)



Shared Memory

• Threads can independently read/write a common resource

• Watch out for cached memory! — implementation issue

• Synchronization is a key issue: when multiple threads depend on

the same object, when is the “right” time to access that object?

– Mutual exclusion: define a critical section in the code and ensure that only

one thread is running that section at a time

• Used in Java at the language level — synchronized keyword

– Condition synchronization: threads wait for a condition to be true (e.g., a

variable gets a value) before proceeding

• Common for I/O or network-related activity

Message Passing

• Threads must explicitly communicate with each other

• Language support

– Abstraction for messages

– Abstractions for send and receive points (e.g., ports)

• Explicit communication

– Resource management, error handling, return parameters

– Synchronization/blocking semantics

– Buffering (particularly when receiving long messages)

• Remote procedure calls

– Tries to make message passing transparent — “looks like a subroutine”


