
Control Flow

• Order of instructions is a crucial component of “telling another
human being what one wants the computer to do” (Knuth)

• Seven forms of control flow:

– sequencing

• includes expressions

– selection: choosing among alternatives (thus a.k.a. alternation)

– iteration: repeating a fragment of code

– procedural abstraction: grouping code into callable units (subroutines)

– recursion: code that is defined in terms of itself

– concurrency: perceived simultaneous execution/evaluation of code

– non-determinacy: no specific ordering of execution, implying that any
order will lead to the desired result

• “A programmer who thinks in terms of these categories…will
find it easy to learn new languages…and design and reason about
algorithms in a language-independent way.”

Much Ado About Goto

• Control flow constructs trace their roots to assembly language

jumps and branches

• The earliest languages had something that approximated that

very closely: goto

– Heavy use in ForTran:
 do 100 i = 1, 10, 2

 ...

100: continue

– Problematic in the context of many of today’s languages

• goto in mid-loop: replaceable continue (C, Java)

• goto in mid-subroutine: explicit return (many languages)

• goto due to errors: exceptions (C++, Java, ML, etc.)

• The move away from goto is embodied in structured

programming — the “object-oriented programming” of the 70s

Sequencing Miscellany

• Key issue for imperative languages, whose main mechanism is
side effects

– Distinction between “statements” and “functions” or “expressions”

– Some languages expressly disallow the latter (“functions” or
“expressions”) from having side effects

– One of my favorite words: expressions without side effects are known as
idempotent — given the same arguments, they yield the same result
regardless of when or in what order they are evaluated

• Watch out, I may digress while talking about idempotence :)

– In functional languages, of course, the emphasis is the other way around

• Certain functions explicitly need side effects: random number
generators, name generators

• Compound statements or functions: when aggregated and viewed
as an expression, the value of a block or compound statement is
the value of its last component expression or statement

Selection

• First appeared in Algol 60

• Variations:

– separate elsif keyword to avoid excessive nesting and to facilitate easier
parsing (as you may recall from Chapter 2)

– rearranging clauses and conditions for greater readability, particularly
Perl:

• unless variant

• switching the if/unless clause and the statement to execute

go_outside() and play() unless $is_raining;

print "Basset hounds have long ears" if $earLength >= 10;

– conditionals as part of the language library and not its syntax (Smalltalk):
value isNull ifTrue: [...] ifFalse: [...]

• “value isNull” evaluates to a Boolean object

• the Boolean class has a method called ifTrue:ifFalse:, which takes a code
block to execute (expressed as the literal “[...]”)

• Short-circuiting can be used for more efficient generated code

Case/Switch Selection

• Syntactically simpler, with implementation consequences

– Instead of boolean evaluation/jumps, case/switch selection can use a
“jump table” — see Figure 6.4 in Scott

• Semantic issue: to fall through (C, C++, Java) or not to fall
through (Pascal, Modula)

• ML function matching looks similar, though must be in the
context of a function, and is significantly more powerful

case (expr) of

 1: ...

 2, 7: ...

 3..5: ...

 10: ...

 else ...

end

switch (expr) {

 case 1: ...; break;

 case 2:

 case 7: ...; break;

 case 3: case 4:

 case 5: ...; break;

 case 10: ...; break;

 default: ...; break;

}

(*
 * roman: int -> string
 *
 * Returns the roman numeral equivalent of its input. Raises an exception
 * if the input is non-positive.
 *)
local
 val symbols = [(1000, "M"), (900, "CM"), (500, "D"), (400, "CD"), (100, "C"),
(90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"),
(5, "V"), (4, "IV"), (1, "I")];

 (*
 * Helper: r n symbols result => returns the roman equivalent of n
 * appended to result, using only the translations in the mapping
 * called symbols.
 *)
 fun r 0 symbols result = result
 | r n [] s = raise Fail "Cannot happen"
 | r n (symbols as (value, rep) :: tail) result =
 if n >= value then
 r (n - value) symbols (result ^ rep)
 else
 r n tail result
in
 fun roman n =
 if n <= 0 then
 raise Fail "No Roman equivalent"
 else
 r n symbols ""
end;

Iteration

• Loops — without them, a program is strictly finite

• Two kinds of loops:

– enumeration-controlled: do something for each element in a collection

– logically controlled: do something while a condition is true or false

• Enumeration-controlled loops, the first generation

– The classic “for loop” — enumerations restricted to ranges of numbers

– Parts: index variable, start value, end value, optional step (also implies
direction); also, many strict rules on what can and cannot change

for i := 5 to 20 by 2 do ...

– Generalization: this really defines a set of discrete values, and the “loop
body” is executed for each of these values…leading to the next generation
of enumeration-controlled loops, based on iterators

– Smalltalk again: for loops are methods of the Number classes

5 to: 20 by: 2 do: [:i | ...]

Logically Controlled Loops

• When to test the condition?

– pre-test: test the condition before entering the loop (while)

– post-test: at least one pass through the loop (do-while, repeat-until)

– midtest: no need to wait until the end of the loop block (exit, break)

• If standalone keyword, need a static semantic check to make sure that the

keyword is only used within a loop

• Some languages combine the test condition with the exit construct (Ada: exit

when all_blanks(line, length))

• For nested loops, the exit/break directive can specify how many “levels” of

loop to exit (Ada, Java)

search: for (int i = 0; i < arrayOfInts.length; i++) {
 for (int j = 0; j < arrayOfInts[i].length; j++) {
 if (arrayOfInts[i][j] == searchfor) {
 foundIt = true;
 break search;
 }
 }
}

note search is an

identifier, not a

“goto label” !

Logically Controlled Loops, cont’d

• Interesting variations (either for convenience, or based on the

“spirit” of the language)

– Perl: separate continue block, distinct midtest loop exit statements (next,

last, redo)

LINE: while (<STDIN>) {

 next LINE if /^#/; # Skip the rest of the loop w/ continue.

 last LINE if /^$/; # Exit the LINE loop; no continue.

 if (s/\\$//) { redo LINE unless eof(); } # Do over; no continue.

 # Do something with the input (like print)...

} continue {

 $count++;

}

– C/C++/Java: the for loop is really a logically controlled variant

– Smalltalk: you guessed it, logically controlled loops are not part of the

syntax but a method of a Block object

[input := input isEmpty] whileTrue

Enumeration-Controlled Loops: the Next

Generation

• Explicitly define the collection over which loop is to operate

– Maintains index variable from first-generation enumeration

– All others are implicit in the collection

– Iteration may be explicit or implicit

// Java < 1.5

for (Iterator it = coll.iterator(); it.hasNext();) {

 Object nextValue = it.next();

 ...

}

"Smalltalk" "(double quotes delimit comments in Smalltalk)"

employees do: [:emp | emp name printOn: systemOut].

Perl

foreach $arg (@ARGV) { ...$arg... }

// Java >= 1.5

for (String s: stringColl) System.out.println(s);

Recursion

• Frequently makes certain algorithms easy to write, though not
required: recursion and logically controlled iteration have
equivalent computational power

• Iteration feels more natural in imperative languages, while
recursion feels more natural in functional languages

• Efficiency depends on implementation

– Naïve implementation on either side tends to favor iteration

– Certain forms of recursion, such as tail recursion, can be very efficient

• No extra syntax needed: just allow a function to call itself from
its own body (or for multiple functions to call each other
cyclically)

Tail Recursion

• Primary argument for less efficiency in recursion is the cost

incurred by a subroutine call: stack allocation, other bookkeeping

• Tail recursion eliminates this overhead: a tail-recursive function

is a specific form of recursion where no additional computation

follows a recursive call; i.e. the recursive call, if performed, is the

final computation in the function

fun gcd a b =
 if a = b then
 a
 else
 if a > b then
 gcd (a - b) b
 else
 gcd a (b - a);

gcd(a, b):
 start:
 if (a == b): return a
 if (a > b): {
 a := a - b; goto start;
 }
 b := b - a;
 goto start;

Tail Recursion Helpers

• Many recursive functions that are not initially tail recursive can

be transformed using (preferably locally-scoped) helpers

fun sum f low high =
 if low = high then
 f low
 else
 f low + sum f (low + 1) high

local
 fun sumhelper f low high subtotal =
 if low = high then
 subtotal + f low
 else
 sumhelper f (low + 1) high (subtotal + f low)
in
 fun sum f low high = sumhelper f low high 0
end;

Applicative- and Normal-Order Evaluation

• Applicative-order evaluation: evaluate all arguments before

passing to a subroutine

– Used by most languages for subroutine evaluations

• Normal-order evaluation: evaluate arguments only when needed

– Used by macros, such as in C

int square(int n) { return n * n; }
#define SQUARE(n) ((n) * (n))

• Beware of side effects in normal-order evaluation
int x = square(y++);
int x = SQUARE(y++); // becomes ((y++) * (y++))

• How about unit testers, particularly, testing for failure:

// Suppose toRoman() throws an exception.
assertFail(toRoman(–5));

Non-Determinacy

• Already have some kind of non-determinacy with expression

evaluation: f(x) + g(x) + h(x)

• Guarded command notation [Dijkstra]
if a >= b -> max := a
[] b >= a -> max := b
if

– Any command whose guard is true may execute, but there is no

specification on which one will run

– Variations on whether at least one guard must be true, or whether an else

option is provided if no guard is true

• Non-determinism useful in concurrency

• How to choose the guarded command?

– Randomization? Circular list (i.e. round robin)? — see Scott p. 307

– “Fairness” = a guard that can be true infinitely often should be selected

infinitely often

int gcd(int a, int b) {
 while (a > b) -> a = a - b
 [] (b > a) -> b = b - a;
 return a;
}

int gcd(int a, int b) {
 while (a != b) {
 if (a > b)
 a = a - b;
 else
 b = b - a;
 }
 return a;
}

Guarded Loops

• Compare these:

void server() {
 while (read()) -> processIn();
 [] (write()) -> processOut();
 [] true -> /* no-op */ ;
}

void server() {
 while (true) {
 if (read())
 processIn();
 else if (write())
 processOut();
 }
}

