Control Flow

Order of instructions is a crucial component of “telling another
human being what one wants the computer to do” (Knuth)
Seven forms of control flow:

sequencing
¢ includes expressions

— selection: choosing among alternatives (thus a.k.a. alternation)

— iteration: repeating a fragment of code

— procedural abstraction: grouping code into callable units (subroutines)

— recursion: code that is defined in terms of itself

— concurrency: perceived simultaneous execution/evaluation of code

— non-determinacy: no specific ordering of execution, implying that any

order will lead to the desired result

“A programmer who thinks in terms of these categories...will
find it easy to learn new languages...and design and reason about
algorithms in a language-independent way.”

Much Ado About Goto

Control flow constructs trace their roots to assembly language
jumps and branches

The earliest languages had something that approximated that
very closely: goto
— Heavy use in ForTran:
do 100 i = 1, 10, 2
100: cont.i.n.ue
— Problematic in the context of many of today’s languages
* goto in mid-loop: replaceable continue (C, Java)
e goto in mid-subroutine: explicit refurn (many languages)
* goto due to errors: exceptions (C++, Java, ML, etc.)
The move away from goto is embodied in structured
programming — the “object-oriented programming” of the 70s

Sequencing Miscellany

Key issue for imperative languages, whose main mechanism is
side effects

Distinction between “statements” and “functions” or “expressions”
Some languages expressly disallow the latter (‘“functions” or
“expressions”) from having side effects

One of my favorite words: expressions without side effects are known as
idempotent — given the same arguments, they yield the same result
regardless of when or in what order they are evaluated

e Watch out, I may digress while talking about idempotence :)
In functional languages, of course, the emphasis is the other way around

Certain functions explicitly need side effects: random number
generators, name generators

Compound statements or functions: when aggregated and viewed
as an expression, the value of a block or compound statement is
the value of its last component expression or statement

Selection

First appeared in Algol 60
Variations:

separate elsif keyword to avoid excessive nesting and to facilitate easier
parsing (as you may recall from Chapter 2)
rearranging clauses and conditions for greater readability, particularly
Perl:

* unless variant

* switching the if/unless clause and the statement to execute

go_outside() and play() unless $is_raining;
print "Basset hounds have long ears" if $earlLength >= 10;

conditionals as part of the language library and not its syntax (Smalltalk):
value isNull ifTrue: [...] ifFalse: [...]
e “value isNull” evaluates to a Boolean object

¢ the Boolean class has a method called ifTrue:ifFalse:, which takes a code
block to execute (expressed as the literal “[...]7)

Short-circuiting can be used for more efficient generated code

Case/Switch Selection

switch (expr
case (expr) of Cexpr) {

case 1: ...; break;
1.
- case 2:
3, P case 7: ...; break;
15: e case 3: case 4:
1- .. case 5: ...; break;
; else ... case 10: ...; break;
en default: ...; break;

* Syntactically simpler, with implementation consequences

— Instead of boolean evaluation/jumps, case/switch selection can use a
“jump table” — see Figure 6.4 in Scott

e Semantic issue: to fall through (C, C++, Java) or not to fall
through (Pascal, Modula)

e ML function matching looks similar, though must be in the
context of a function, and is significantly more powerful

* roman: int -> string

* Returns the roman numeral equivalent of its input. Raises an exception
* if the input is non-positive.
*)
local
val symbols = [(1@0@, "M"), (%00, "CM"), (500, "D"), (400, "CD"), (100, "C"),
(90, "XC"), (50, "L"), (40, "XL"), (10, "X"), (9, "IX"),
(s, "V, 4, "IV, @, "IN 1

(*
* Hel . r n symbols result = ns the roman equivalent of n
ppended to result, using only the tra ions in the mapping
* called symbols.
*)
fun r @ symbols result = result
| rn[] s = raise Fail "Cannot happen"
| r n (symbols as (value, rep) :: tail) result =
if n >= value then
r (n - value) symbols (result A rep)
else
r n tail result

in

raise Fail "No Roman equivalent"
else
r n symbols

end;

Iteration

e Loops — without them, a program is strictly finite

e Two kinds of loops:
— enumeration-controlled: do something for each element in a collection
— logically controlled: do something while a condition is true or false

e Enumeration-controlled loops, the first generation
The classic “for loop” — enumerations restricted to ranges of numbers

— Parts: index variable, start value, end value, optional step (also implies
direction); also, many strict rules on what can and cannot change

for i :=5 to 20 by 2 do ...

— Generalization: this really defines a set of discrete values, and the “loop
body” is executed for each of these values...leading to the next generation
of enumeration-controlled loops, based on iterators

— Smalltalk again: for loops are methods of the Number classes
5to: 20 by: 2 do: [:i | ...]

Logically Controlled Loops

e When to test the condition?
— pre-test: test the condition before entering the loop (while)
— post-test: at least one pass through the loop (do-while, repeat-until)
— midtest: no need to wait until the end of the loop block (exit, break)
* If standalone keyword, need a static semantic check to make sure that the
keyword is only used within a loop
* Some languages combine the test condition with the exit construct (Ada: exit
when all_blanks(line, length))

* For nested loops, the exit/break directive can specify how many “levels” of
loop to exit (Ada, Java)

search: for (int i = @; i < arrayOfInts.length; i++) {
for (int j = @; j < arrayOfInts[i].length; j++) {
if (arrayOfInts[i][j] == searchfor) {
foundIt = true;

note search is an R
» break search;

identifier, not a 1
“goto label” ! }

Logically Controlled Loops, cont’d

* Interesting variations (either for convenience, or based on the
“spirit” of the language)
— Perl: separate continue block, distinct midtest loop exit statements (next,
last, redo)
LINE: while (<STDIN>) {
next LINE if /A#/; # Skip the rest of the loop w/ continue.
last LINE if /A$/; # Exit the LINE loop; no continue.
if (s/\\$//) { redo LINE unless eof(); } # Do over; no continue.
Do something with the input (like print)...
} continue {
$count++;

}

— C/C++/Java: the for loop is really a logically controlled variant

— Smalltalk: you guessed it, logically controlled loops are not part of the
syntax but a method of a Block object
[input := input isEmpty] whileTrue

Enumeration-Controlled Loops: the Next
Generation

» Explicitly define the collection over which loop is to operate
— Maintains index variable from first-generation enumeration
— All others are implicit in the collection
— Iteration may be explicit or implicit

// Java < 1.5
for (Iterator it = coll.iterator(); it.hasNext(Q);) {
Object nextValue = it.next();

}

"Smalltalk" "(double quotes delimit comments in Smalltalk)"
employees do: [:emp | emp name printOn: systemOut]J.

Perl
foreach $arg (@ARGY) { ...$arg... }

// Java >= 1.5
for (String s: stringColl) System.out.println(s);

Recursion

* Frequently makes certain algorithms easy to write, though not
required: recursion and logically controlled iteration have
equivalent computational power

e [teration feels more natural in imperative languages, while
recursion feels more natural in functional languages

 Efficiency depends on implementation
— Naive implementation on either side tends to favor iteration
— Certain forms of recursion, such as tail recursion, can be very efficient

* No extra syntax needed: just allow a function to call itself from
its own body (or for multiple functions to call each other
cyclically)

Tail Recursion

e Primary argument for less efficiency in recursion is the cost
incurred by a subroutine call: stack allocation, other bookkeeping

» Tail recursion eliminates this overhead: a tail-recursive function
is a specific form of recursion where no additional computation
follows a recursive call; i.e. the recursive call, if performed, is the
final computation in the function

fun gcd a b = gcd(a, b):
if a = b then start:
a if (a == b): return a
else if (a > b): {
if a > b then a :=a - b; goto start;
gcd (a - b) b }
else b :=b - a;
gcd a (b - a); goto start;

v/v

Tail Recursion Helpers

* Many recursive functions that are not initially tail recursive can
be transformed using (preferably locally-scoped) helpers

fun sum f low high =
if low = high then
f low
else
f low + sum f (low + 1) high

local

fun sumhelper f low high subtotal =
if low = high then
subtotal + f low
else
sumhelper f (low + 1) high (subtotal + f low)
in
fun sum f low high = sumhelper f low high 0
end;

Applicative- and Normal-Order Evaluation

* Applicative-order evaluation: evaluate all arguments before
passing to a subroutine
— Used by most languages for subroutine evaluations

* Normal-order evaluation: evaluate arguments only when needed

— Used by macros, such as in C
int square(int n) { return n * n; }
#define SQUARE(n) ((n) * (n))
e Beware of side effects in normal-order evaluation
int x = square(y++);
int x = SQUARE(Cy++); // becomes ((y++) * (y++))

e How about unit testers, particularly, testing for failure:

// Suppose toRoman() throws an exception.
assertFail (toRoman(-5));

Non-Determinacy

e Already have some kind of non-determinacy with expression
evaluation: f(x) + g(x) + h(x)

* Guarded command notation [Dijkstra]

if a>>b -> max :=a
[1b>>a->max :=b
if

— Any command whose guard is true may execute, but there is no
specification on which one will run

— Variations on whether at least one guard must be true, or whether an else
option is provided if no guard is true

e Non-determinism useful in concurrency

e How to choose the guarded command?
— Randomization? Circular list (i.e. round robin)? — see Scott p. 307

— “Fairness” = a guard that can be true infinitely often should be selected

infinitely often

Guarded Loops

e Compare these:

int gcd(int a, int b) {
while (a '= b) {

if (a > b)
a=a - b;
else
b=b- a;
3
return a;

int gcd(int a, int b) {
while (a>b) ->a=a -b
0 Mm>a) ->b=>b - a;
return a;

void server() {
while (true) {
if (read())
processIn();
else if (write())
processOut();

void server() {
while (read()) -> processIn();
[0 (write()) -> processOut();
[] true -> /* no-op */ ;

