
Programming Language Syntax

Data structure for code

generation

Token streamOutput

Token streamSymbol/character streamInput

Tools

Theoretical foundation

Algorithm

Specification

Deterministic push-down

automaton

Deterministic finite automaton

yacc, bisonlex, flex

Parsing

- LL, top-down, predictive

- LR, bottom-up

Lexical analysis/scanning

Context-free grammars

- expressed in BNF or

EBNF

Regular expressions

MacrosyntaxMicrosyntax

Microsyntax

• Specified using regular expressions

– a character (in some encoding system; once ASCII, can be Unicode)

– the empty string (! or !)

– 2 concatenated regular expressions

– 2 regular expressions separated by |, denoting a choice between the two

– a regular expression followed by the Kleene star (*), denoting zero or

more instances of that regular expression

• Example: numeric literal (unsigned_number)

digit " 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9

unsigned_integer " digit digit*

unsigned_number " unsigned_integer

((. unsigned_integer) | !)

((e (+ | – | !) unsigned_integer) | !)

Scanning in Programming Languages

• Regular expressions actually have many other uses beyond
programming languages: text search/pattern matching, URL
rewriting, network protocols

• In the context of programming languages, regular expressions
form the specification component of lexical analysis, or scanning

• Beyond that, scanning also…

– Removes whitespace (spaces, tabs, linefeeds, carriage returns)

– Removes comments

– Handle lexical errors (token-level problems; actually quite rare)

• Two styles of scanning

– Handcoded (actually semi-handcoded — scanners follow the same general
pattern)

– Table-driven (i.e. data-driven)

Scanner Implementation

• Handcoded way = essentially a “writing out” of a finite-state

automaton

– This belongs to Compiler Construction

• Data-driven/table-driven way = use a scanner generator; the best

known are lex and its newer version, flex

flex

compiler

executable

.lex file lex.yy.c

executable

symbol/character stream token stream

Tokens

• Once a token is recognized, two key pieces of information are

passed on to the parser:

– What was recognized (the left side of the regular expression)

– The exact character sequence that was recognized as this token

– Special case: reserved words vs. identifiers

• In Java, private is a reserved word, but it is lexically no different from a

variable called, say sarge

• To handle this, we “cheat” a little bit by maintaining a separate data structure

that lists the reserved words in a language; when an “identifier” is found

during lexical analysis, it is looked up against the list of known reserved

words, and if there is a match, the token is returned as the reserved word

instead of the identifier

– Examples:

• “500” is an integer with value 500

• “x” is an identifier with value “x”

• (in C) “return” is a reserved word, so its token is return

Macrosyntax

• Specified using context-free grammars

– heuristically: “regular expressions with recursion”

– standard format: Backus-Naur Form (BNF) or Extended Backus-Naur Form
(EBNF), named after John Backus and Peter Naur

– historical tidbit: first used to specify Algol-60

– EBNF is essentially BNF with |, *, and () added

• Example (boldface == terminals == scanner output):

program " stmt_list $$

stmt_list " stmt stmt_list | !

stmt " id := expr | read id | write expr

expr " term term_tail

term_tail " add_op term term_tail | !

term " factor factor_tail

factor_tail " mult_op factor factor_tail | !

factor " (expr) | id | literal

add_op " + | –

mult_op " * | /

Parsing in Programming Languages

• Context-free grammars (and parsing in general) actually have

many other uses beyond programming languages: speech

recognition, document serialization, user interface specification

• In the context of programming languages, context-free grammars

form the specification component of syntactic analysis, or

parsing

• General parsing of any context-free grammar is O(n3)

• Two context-free grammar categories accommodate O(n) parsing

algorithms (i.e. they’re practical!)

– LL (left-to-right, left-most derivation) " top-down or predictive

– LR (left-to-right, right-most derivation) " bottom-up or shift-reduce

LL(1) and LR(1): 1 token of look-ahead

LL(1)

program " stmt_list $$

stmt_list " stmt stmt_list | !

stmt " id := expr | read id | write expr

expr " term term_tail

term_tail " add_op term term_tail | !

term " factor factor_tail

factor_tail " mult_op factor factor_tail | !

factor " (expr) | id | literal

add_op " + | –

mult_op " * | /

LR(1)

program " stmt_list $$

stmt_list " stmt_list stmt | !

stmt " id := expr | read id | write expr

expr " term | expr add_op term

term " factor | term mult_op factor

factor " (expr) | id | literal

add_op " + | –

mult_op " * | /

read A

read B

sum := A + B

write sum

write sum / 2

$$

The Pascal if–then–else

stmt " if condition then_clause else_clause | other_stmt

then_clause " then stmt

else_clause " else stmt | !

• Ambiguous for “if C1 then if C2 then S1 else S2”

– Rewrite the grammar

– Implement a disambiguating rule (“The else clause matches the closest unmatched then.”)

– Change the syntax!

• Explicit end-markers (end, })

• Addition of a separate elsif keyword

Parser Implementation

• “The hand way” — LL grammars allow handcoded recursive

descent

• Data-driven/table-driven way — more general, and can support

bottom-up parsing of LR grammars

– Doable via parser generators such as yacc and bison

bison

compiler

executable

.y file .tab.c source code

executable

token stream (from lexical analyzer component) parse tree

lexical analyzer

(i.e. flex source code:

lex.yy.c)

Implementation Issues

• Look-ahead token(s), or “Real parsers ask for directions”

• The dreaded syntax error, or “Most programmers can’t code the

way Mozart composed”

– Panic mode

– Phrase-level recovery

• first and follow sets

• historical tidbit: first documented by Wirth for Pascal

– Context-sensitive lookahead

– Exception-based recovery

– Error productions

A Virtual Forest

• Parsing output represents progressively abstract types of data

structures, typically best represented a tree (or very similar-

looking variant)

• In programming languages, the ultimate goal of parser output is

an entity that facilitates code generation and optimization

• Parse trees: a direct mapping from the token stream to the

context-free grammar

• Syntax trees: eliminates “helper” tokens and represents the pure

syntactic structure of a program

• Abstract syntax trees: static semantics — adds meaning to the

symbols of a program, particularly its variables, functions, and

other declared entities

