Programming Language Syntax

Microsyntax Macrosyntax

Specification Regular expressions Context-free grammars

- expressed in BNF or
EBNF

Algorithm Lexical analysis/scanning Parsing
- LL, top-down, predictive
- LR, bottom-up

Input Symbol/character stream Token stream

Output Token stream Data structure for code

generation

Theoretical foundation

Deterministic finite automaton

Deterministic push-down
automaton

Tools

lex, flex

yacc, bison

Microsyntax

» Specified using regular expressions

— acharacter (in some encoding system; once ASCII, can be Unicode)

— the empty string (€ or A)

— 2 concatenated regular expressions

— 2 regular expressions separated by |, denoting a choice between the two

— aregular expression followed by the Kleene star (*), denoting zero or
more instances of that regular expression

e Example: numeric literal (unsigned_number)
digit—0111213141516171819
unsigned_integer — digit digit*

unsigned_number — unsigned_integer

((. unsigned_integer) | €)

((e (+1=1€) unsigned_integer)| €)

Scanning in Programming Languages

Regular expressions actually have many other uses beyond
programming languages: text search/pattern matching, URL
rewriting, network protocols

In the context of programming languages, regular expressions
form the specification component of lexical analysis, or scanning

Beyond that, scanning also...
— Removes whitespace (spaces, tabs, linefeeds, carriage returns)
— Removes comments
— Handle lexical errors (token-level problems; actually quite rare)

Two styles of scanning

— Handcoded (actually semi-handcoded — scanners follow the same general
pattern)

— Table-driven (i.e. data-driven)

Scanner Implementation

Handcoded way = essentially a “writing out” of a finite-state
automaton
— This belongs to Compiler Construction

Data-driven/table-driven way = use a scanner generator; the best
known are lex and its newer version, flex

lex file flex > lex.yy.c

L Compiler ———————— executable

l

symbol/character stream ——————» executable ————— token stream

Tokens

Once a token is recognized, two key pieces of information are
passed on to the parser:
— What was recognized (the left side of the regular expression)
— The exact character sequence that was recognized as this token
— Special case: reserved words vs. identifiers
e InJava, private is a reserved word, but it is lexically no different from a
variable called, say sarge

* To handle this, we “cheat” a little bit by maintaining a separate data structure
that lists the reserved words in a language; when an “identifier” is found
during lexical analysis, it is looked up against the list of known reserved
words, and if there is a match, the token is returned as the reserved word
instead of the identifier

— Examples:

e “500” is an integer with value 500

[Tt}

e “x”is an identifier with value “x”

¢ (in C) “return” is a reserved word, so its token is return

Macrosyntax

Specified using context-free grammars
— heuristically: “regular expressions with recursion”

— standard format: Backus-Naur Form (BNF) or Extended Backus-Naur Form
(EBNF), named after John Backus and Peter Naur

— historical tidbit: first used to specify Algol-60
— EBNF is essentially BNF with |, *, and () added

Example (boldface == terminals == scanner output):
program —> stmt_list $$
stmt_list — stmt stmt_list | €
stmt — id := expr | read id | write expr
expr — term term_tail
term_tail — add_op term term_tail | €
term — factor factor_tail
factor_tail — mult_op factor factor_tail | €
factor — (expr) |id | literal
add_op — +1-
mult_op — *1/

Parsing in Programming Languages

* Context-free grammars (and parsing in general) actually have
many other uses beyond programming languages: speech
recognition, document serialization, user interface specification

* In the context of programming languages, context-free grammars
form the specification component of syntactic analysis, or
parsing

» General parsing of any context-free grammar is O(n?)
* Two context-free grammar categories accommodate O(n) parsing
algorithms (i.e. they re practical!)
— LL (left-to-right, left-most derivation) — top-down or predictive
— LR (left-to-right, right-most derivation) — bottom-up or shift-reduce

LL(1) and LR(1): 1 token of look-ahead

LL(1) LR(1)
program — stmi_list $$ program — stmt_list $$
stmt_list — stmt stmt_list | € stmt_list — stmt_list stmt | €
stmt — id := expr | read id | write expr stmt — id := expr | read id | write expr
expr —> term term_tail expr — term | expr add_op term
term_tail — add_op term term_tail | €
term — factor factor_tail term — factor | term mult_op factor
factor_tail — mult_op factor factor_tail | €
factor — (expr) |id | literal factor — (expr) |id | literal
add_op = +1- add_op — + -
mult_op — *1/ mult_op — * 1/
read A
\ read A /
sum:=A+B
write sum

write sum / 2

$$

The Pascal if~then—else

stmt — if condition then_clause else_clause | other_stmt
then_clause — then stmt

else_clause — else stmt | €

Ambiguous for “if C, then if C, then S, else S,”

— Rewrite the grammar
— Implement a disambiguating rule (“The else clause matches the closest unmatched then.”)

— Change the syntax!

Explicit end-markers (end, })
Addition of a separate elsif keyword

Parser Implementation

e “The hand way” — LL grammars allow handcoded recursive
descent
e Data-driven/table-driven way — more general, and can support
bottom-up parsing of LR grammars
— Doable via parser generators such as yacc and bison

lexical analyzer
(i.e. flex source code:

. lex.yy.c)
.y file —— bison —————— .tab.c source code T

compiler > executable

l

token stream (from lexical analyzer component) ———»| executable —— parse tree

Implementation Issues

* Look-ahead token(s), or “Real parsers ask for directions”

e The dreaded syntax error, or “Most programmers can’t code the
way Mozart composed”

Panic mode

Phrase-level recovery

e first and follow sets

* historical tidbit: first documented by Wirth for Pascal
Context-sensitive lookahead

Exception-based recovery

Error productions

A Virtual Forest

* Parsing output represents progressively abstract types of data
structures, typically best represented a tree (or very similar-
looking variant)

* In programming languages, the ultimate goal of parser output is
an entity that facilitates code generation and optimization

e Parse trees: a direct mapping from the token stream to the
context-free grammar

* Syntax trees: eliminates “helper” tokens and represents the pure
syntactic structure of a program

* Abstract syntax trees: static semantics — adds meaning to the
symbols of a program, particularly its variables, functions, and
other declared entities

