
CMSI 585
P R O G R A M M I N G L A N G UA G E S (G R A D UA T E L E V E L)

Fall 2006

Assignment 1107
This assignment seeks to get your hands dirty with types. As always, there is much more material available
than can be directly addressed by any single assignment, so make sure to do the reading as well.

Not for Submission
1. Read Scott Chapter 7.
2. Install and learn the JSUnit unit testing frame-

work for JavaScript. The course Web site holds
the link to the framework, while the JavaScript
sample code given at the beginning of the se-
mester uses JSUnit.

For Submission
Commit the programming tasks under the speci-
fied directories with the given tag, and submit your
answers to the assigned textbook exercises and
other questions on hardcopy. If you do the extra
credit work, submit that on hardcopy as well. The
extra credit is cumulative, not selective — the “ex-
tra extra” credit only counts if you’ve already done
the “single extra” credit exercise.
1. Answer Scott Exercise 7.2.
2. Write a set of JavaScript functions, collectively

gathered in thingAssociator.js, that uses the lan-
guage’s property-based approach to associate
one “thing” with another. These functions are:
• associate(map, key, value): Takes the JavaScript

object passed as map and sets its key property
to value. This is essentially a wrapper for
map[key] = value.

• getDirectAssociation(map, key): Takes the object
map and returns the value that map currently
associates with key. It returns the JavaScript
undefined constant if key has not been associ-
ated with any value.

• getAssociationClosure(map, key): Takes the ob-
ject map and recursively follows the key prop-
erty within map until it reaches a value that is
not itself a key in the map. This is the value
that the function then returns. For example,
if map associates “Hello” with “World” and
“World” with 10, then getAssociationClo-
sure(map, “Hello”) returns 10.

• getAllAssociations(map): Returns a JavaScript
array of the map object’s properties, numeri-
cally indexed starting at zero. Each element
of this array should be a JavaScript object
with four properties: key, which holds an as-
sociation’s key property; keyType, which holds
the type of that property; value, which holds
the value associated with that key in map; and
valueType, which holds that value’s type.

3. Demonstrate the functionality of these func-
tions through a series of unit tests using the
JSUnit framework. Call this JSUnit test page
yourName_thingAssociatorTest.html.
Commit all code under /homework/cmsi585/
thingAssociator/js. Tag these files with hw-1107.

4. Answer Scott Exercise 7.19 (suggestion: write a
small program that helps provide the answer).

5. Answer Scott Exercise 7.24.
6. Answer Scott Exercise 7.28.
7. Answer Scott Exploration 7.38; consider all

three approaches here: (1) specified representa-
tion in the language, (2) semantic behavior with
guaranteed implementation-specific representa-
tion, and (3) semantic behavior with varying
implementation-specific representation.

Extra Credit
1. Answer Scott Exercise 7.5.
2. Answer Scott Exercise 7.17.

Extra Extra Credit
Take a non-primitive type (array, record, list, set,
etc.) from any language in our “big 6” (C, C++,
Java, JavaScript, ML, and Perl) and compare the
semantics of this type with the semantics of a
similarly named type from a language that is not in
our “big 6” (e.g., compare JavaScript’s concept of
an array with Ada’s concept of an array).

