
(Modern) Animation
Quick Start

• Animation in computer graphics has a long and
storied history, but before we go into that, we’ll jump
right into how it’s generally done today, specifically in
OpenGL (GLUT)

• Animation today is full-frame, double-buffered, and is
actually not unlike traditional cel animation: present,
in rapid order, a series of still images which the
human brain interprets as fluid motion

• As a rule of thumb, we start perceiving “fluid motion”
at around 30 frames per second

Drawing Full Frames

• You’ve now seen a single instance of OpenGL
drawing, which generally goes like this:

Clear the display

Draw the objects

• The trick is, you don’t want the user to see the screen
clear — this results in perceived flicker:

Enter Double Buffering

• The solution to the flickering issue is a technique
called double buffering: with double buffering, the
system actually maintains two full screens — buffers
— at any given time; one is on display, and the other
is invisible

• Flicker-free animation is achieved by painting on the
offscreen buffer, then swapping the buffers

• Graphics hardware is set up so that buffers can be
swapped really quickly; drawing of the next frame
then proceeds on the new offscreen buffer

viewer

 buffer 1

 buffer 0

 buffer 0

 buffer 1

1. Viewer sees buffer 0
1a. Program draws into buffer 1

2. System swaps buffers 0
and 1; buffer 1 now visible
to the viewer

3. Viewer sees buffer 1
3a. Program draws into buffer 0

tim
e

Frame Rate and Real Time

• During double buffering, the frame rate is the
frequency at which the buffers swap — conceptually
equivalent to the “classic” frame rate of cel animation

• However, remember that we’re on a computer
system here — the frame rate is never absolutely the
same, due to the amount of CPU time available, and
the scheduling of other processes in the system

• Thus, animation algorithms must be based on real
time, not frame rate — otherwise, moving objects’
velocities will depend on CPU speed and scheduling

• What you really want is for a more powerful system
to render more frames per second than a less powerful
system — but to still keep objects “moving” at the
same “speed”

• To do this, the classic mechanics equation applies:

distance = rate * time

1. Determine a rate/velocity/speed for moving objects
in your program based on real time

2. When the CPU gives you time to display a frame,
calculate how much time has passed since the last
time you displayed a frame

3. Use d = rt to calculate how far to move the object
in the new, upcoming frame

• Some specific GLUT calls/constants to remember
when doing full-frame, real-time-based animation:

glutInitDisplayMode(GLUT_DOUBLE | ...);

Here, GLUT_DOUBLE sets up double buffering

glutSwapBuffers();

Call this when you’re done drawing; GLUT will make
the buffer that you were using visible, and prepare
the other buffer for the next time you draw a scene

GLUT Specifics

• The function int glutGet() returns the current value
of various GLUT variables. For animation, we want:

int currentTime = glutGet(GLUT_ELAPSED_TIME);

This will tell you the amount of time since some
baseline value; what matters is how much time has
passed since the last time you drew a frame

Typically, you define a variable, say lastTime, and use
currentTime – lastTime to determine the amount by
which to move the objects in your program

glutPostRedisplay();

This asks GLUT to repaint your window — you
almost never call the display function directly

With this overall setup for animation, you can perform
a few other useful things:

• Calculate frame rate — have a counter variable to
increment whenever you generate a new frame; at
regular intervals, use it to infer the overall frame rate

• Cap frame rate — generating a new frame (calculate
new state + redisplay) can be expensive; you can give
CPU time to other programs by doing nothing until
the appropriate amount of time (e.g. at least 1/30th of
a second) has passed

Other Handy Animation
Tricks

