
The OpenGL Shading 
Language (GLSL)

• Or, see what you can do now that you understand 
what’s going on behind the scenes

• Everything we’ve learned so far about how OpenGL 
does computer graphics is known as its fixed-function 
mode — it’s how it works “out of the box,” with no 
further intervention from you

• But, we have learned by now that, if you know what 
you’re doing, you can do things differently, whether to 
add new effects or change an existing one

GLSL Big Picture

• GLSL is standard with OpenGL 2.0 or greater; it is an 
extension in prior versions

• GLSL programs replace the standard OpenGL graphics 
pipeline with your own: all state variables and vertex 
information are made available to you, and you 
determine the output produced by these values

• Using GLSL typically involves: (1) designing your own 
shading algorithm, (2) implementing the algorithm in 
GLSL, and (3) telling an OpenGL program to use your 
shader(s) instead of the default fixed functionality



Vertex and Fragment Shaders

• There are two types of shaders, corresponding to the 
two phases into which you can inject your own 
functionality: vertex and fragment

• A vertex shader takes data such as the current vertex, 
normal, and color, and produces a final position, front 
and back colors, plus additional user-defined values

• A fragment shader takes pixel coordinates, color, user-
defined values, among others, and produces a final 
fragment color, depth, or other data

Hooking Up GLSL

GLSL is a programming language, and so using it with 
OpenGL is not unlike programming in general:

• Write the source code

• Pass the source code to OpenGL for compilation 
(catching errors if any)

• Link compiled shaders into an overall program (also 
catching possible errors)

• Pass values or attributes to the program using the 
designated API as needed



Language Highlights

As a language, GLSL is syntactically similar to C and Java, 
though of course includes features that specifically 
address computer graphics algorithms:

• Vector and matrix types and operations (vec2, vec3, 
vec4, mat2, mat3, mat4; dot(), cross(), normalize(), and 
vector/matrix overloaded +, *, etc.)

• Vector/matrix access includes array-style (e.g., v[0]), 
structure-style (e.g., v.x or c.r), and an interesting 
operation called swizzling, which concatenates 
attributes (e.g., luminance = color.rrr; diag = v.xxx)

• Variables may have type modifiers, three of which are 
specific to how the graphics pipeline works:

const resembles similar constructs in other languages

attribute indicates a value that may be attached on a per-vertex basis (in case color, 
material, normal, among others, are not enough)

uniform indicates a value that is passed by the calling OpenGL program that will not 
change within the shader

varying values are calculated by the vertex shader, then passed into the fragment shader

• A family of sampler data types enables access to 
texture maps from within a shader

• Identifiers starting with gl_ are reserved — assorted 
state machine values are available through these names 
(gl_Vertex, gl_Color, gl_FrontMaterial, and many more)

• Wide variety of built-in functions, including specialized 
ones like reflect(), refract(), and noise()


