
Graphics = Light
= Color = Memory

• Light-emitting media

CRT: cathode ray tube — phosphors excited by electrons

LCD: liquid crystal display — liquid crystals in a grid; current controls 
polarization and thus controls what colors can be seen

Projected LCD: LCD image is magnified before it reaches the viewer

Plasma: noble gas in between two glass sheets, also affiliated with an 
electrode grid; current excites the gas to emit light

• Light-emitting media use an additive approach to 
color: add a color by adding light in that color (i.e., 
white = light in all colors)

• Light-reflecting media (print)

Ink-jet: fine spray of pigment onto display medium (most of the time, 
paper)

Thermal transfer: heat changes pigment on special paper

Laser: laser beam “etches” image on a drum coated with toner

• Light-reflecting media use a subtractive approach to 
color: pigments absorb unwanted colors until only the 
desired color reflects back (i.e., white = no pigment)



• Line-based: Electron gun traces lines directly from 
point A to point B

• Based on oscilloscope technology — so pretty much 
restricted to CRT technology

• Made a lot of sense back when memory was 
expensive…

… but what does memory have to do with graphics 
anyway?

Vector Displays



Raster Displays

• Grid-based: Display is a two-dimensional raster (array) 
of individual picture elements (pixels) in memory

This memory block goes by many names: frame buffer, graphics 
memory, VRAM

• Display devices transfer or map this 2D grid onto 
their specific type of display

• CRT: electron gun scans the entire screen horizontally 
and vertically, exciting the appropriate phosphor that 
corresponds to its grid location

Phosphors fade, so watch out for flicker

• LCD/projected LCD: grid of crystals maps to a memory 
location

• Plasma: ditto, but this time the pixels correspond to 
cells of gas

•Note how LCD and plasma displays are inherently 
raster-oriented

• So, if pixels are memory, what do they hold?



• The “value” of a pixel is its color

• The way a pixel represents color determines the 
amount of memory required by that pixel

• Linear memory is mapped into two dimensions: 
requires a width and height

Different mapping schemes, such as linear or planar

• Pixel ratio is a pixel’s aspect ratio — because 
sometimes pixels aren’t square

Mapping Memory to Pixels

• Example: a 4x4 frame buffer/display

Frame buffer size (in units of memory) depends on 
the size of each pixel

• Non-CRT display hardware devices typically have a 
native resolution, corresponding to the grid size of its 
physical elements (liquid crystals, cells of gas)
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The three-color model is used to quantify digital light-
emitted color: colors are a triple of (red, green, blue)

• Light-emitted = additive color, so all colors can be 
represented by a combination of red, green, and blue

• Individual color values range from “none” to “full 
blast,” such as ranging from 0.0 to 1.0 in floating 
point, 0 to 255 for 8-bit colors, and so on

• Studies have shown that the human eye can generally 
perceive no more than 256 levels of a specific hue

Pixels and Color

• So if pixels map to some (R, G, B) tuple, how is this 
tuple stored in memory?

Direct representation: the pixel is the tuple

• For 1 byte per color, we need 3 bytes per pixel

• For monochrome, we need 1 bit per pixel

Indexed representation: a pixel in memory is an index 
to a color lookup table (a.k.a. LUT or palette)

• Typically described as “simultaneous i out of n possible colors.”

• i ! amount of memory occupied by a pixel

• n ! amount of memory occupied by a color

• Catch phrases like “5.0 megapixels” or “128M of 
graphics memory” ultimately owe their precise 
technical meaning to how pixels map to memory



• Before full-frame animation became practical, 
computer graphics animation techniques were very 
reliant on knowledge of how pixels corresponded to 
physical memory

• Harder and harder to find real-world examples of 
these older animation techniques; perhaps the best 
place at this point would be in emulators of older 
arcade/computer games

Old-School Animation:
“Close to the Iron”

Palette animation: relies on indexed/indirect method of 
representing computer graphics — image stays the 
same, and only the palette changes
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Sample old-school 
arcade game: Zaxxon



XOR-based animation: Based on the exclusive-or 
equality ((a xor b) xor b) = a

• If you XOR a pixel with another, then XOR-ing that 
pixel again restores the previous value

• Requires no additional memory to “remember” an 
animation’s background

• Generally works well only with monochrome graphics

• Useful for transient effects like rubberbanding — but 
these days even that application of XOR animation is 
fading away

• Sample old-school arcade game: Berserk

Sprite animation: Blocks of memory organized into 
individual animation units called “sprites”

• Copy background to a buffer

• Paint sprite (usually a memory dump with the 
exception of a designated “background” color)

• To move, paint the background back, then repeat

• Can be used with a single display buffer, or combined 
with double buffering to reduce flicker

• Basis for a whole generation of video games, such as 
Arkanoid, the Donkey Kongs, Rastan…the list goes on 
and on



• Since colors are just numbers after all, it stands to 
reason that manipulating these numbers somehow 
will result in some recognizable color effects

• Rudimentary image processing is thus a matter of 
implementing a function from some pixel to another, 
in some meaningful way

• Simplest form: function that takes a single pixel and 
produces a new pixel value

Basic Image Manipulation

• Simple examples:

Filtering — showing only the red, green, or blue 
elements of an image

Brightness and contrast — manipulating all three 
components in a coordinated fashion

Bit-level effects — combining two images using bit-
oriented operations

• More advanced form: function takes into account a 
pixel’s “neighbors” — the 8 or more pixels 
surrounding it — to determine its new value

Ultimately based on the same principle; just different 
(more) input


