
Graphics = Light
= Color = Memory

• Light-emitting media

CRT: cathode ray tube — phosphors excited by electrons

LCD: liquid crystal display — liquid crystals in a grid; current controls 
polarization and thus controls what colors can be seen

Projected LCD: LCD image is magnified before it reaches the viewer

Plasma: noble gas in between two glass sheets, also affiliated with an 
electrode grid; current excites the gas to emit light

• Light-emitting media use an additive approach to 
color: add a color by adding light in that color (i.e., 
white = light in all colors)

• Light-reflecting media (print)

Ink-jet: fine spray of pigment onto display medium (most of the time, 
paper)

Thermal transfer: heat changes pigment on special paper

Laser: laser beam “etches” image on a drum coated with toner

• Light-reflecting media use a subtractive approach to 
color: pigments absorb unwanted colors until only the 
desired color reflects back (i.e., white = no pigment)



• Line-based: Electron gun traces lines directly from 
point A to point B

• Based on oscilloscope technology — so pretty much 
restricted to CRT technology

• Made a lot of sense back when memory was 
expensive…

… but what does memory have to do with graphics 
anyway?

Vector Displays



Raster Displays

• Grid-based: Display is a two-dimensional raster (array) 
of individual picture elements (pixels) in memory

This memory block goes by many names: frame buffer, graphics 
memory, VRAM

• Display devices transfer or map this 2D grid onto 
their specific type of display

• CRT: electron gun scans the entire screen horizontally 
and vertically, exciting the appropriate phosphor that 
corresponds to its grid location

Phosphors fade, so watch out for flicker

• LCD/projected LCD: grid of crystals maps to a memory 
location

• Plasma: ditto, but this time the pixels correspond to 
cells of gas

•Note how LCD and plasma displays are inherently 
raster-oriented

• So, if pixels are memory, what do they hold?



• The “value” of a pixel is its color

• The way a pixel represents color determines the 
amount of memory required by that pixel

• Linear memory is mapped into two dimensions: 
requires a width and height

Different mapping schemes, such as linear or planar

• Pixel ratio is a pixel’s aspect ratio — because 
sometimes pixels aren’t square

Mapping Memory to Pixels

• Example: a 4x4 frame buffer/display

Frame buffer size (in units of memory) depends on 
the size of each pixel

• Non-CRT display hardware devices typically have a 
native resolution, corresponding to the grid size of its 
physical elements (liquid crystals, cells of gas)

red black green puce

red black blue green

black red lime tan

cyan white white black



The three-color model is used to quantify digital light-
emitted color: colors are a triple of (red, green, blue)

• Light-emitted = additive color, so all colors can be 
represented by a combination of red, green, and blue

• Individual color values range from “none” to “full 
blast,” such as ranging from 0.0 to 1.0 in floating 
point, 0 to 255 for 8-bit colors, and so on

• Studies have shown that the human eye can generally 
perceive no more than 256 levels of a specific hue

Pixels and Color

• So if pixels map to some (R, G, B) tuple, how is this 
tuple stored in memory?

Direct representation: the pixel is the tuple

• For 1 byte per color, we need 3 bytes per pixel

• For monochrome, we need 1 bit per pixel

Indexed representation: a pixel in memory is an index 
to a color lookup table (a.k.a. LUT or palette)

• Typically described as “simultaneous i out of n possible colors.”

• i ! amount of memory occupied by a pixel

• n ! amount of memory occupied by a color

• Catch phrases like “5.0 megapixels” or “128M of 
graphics memory” ultimately owe their precise 
technical meaning to how pixels map to memory



• Before full-frame animation became practical, 
computer graphics animation techniques were very 
reliant on knowledge of how pixels corresponded to 
physical memory

• Harder and harder to find real-world examples of 
these older animation techniques; perhaps the best 
place at this point would be in emulators of older 
arcade/computer games

Old-School Animation:
“Close to the Iron”

Palette animation: relies on indexed/indirect method of 
representing computer graphics — image stays the 
same, and only the palette changes

color 0 color 2

color 4
0

Rotate among these 
palettes in turn.

1
2
3
4
5
6
7

color 6

color 1 color 3

color 5

color 7

Sample old-school 
arcade game: Zaxxon



XOR-based animation: Based on the exclusive-or 
equality ((a xor b) xor b) = a

• If you XOR a pixel with another, then XOR-ing that 
pixel again restores the previous value

• Requires no additional memory to “remember” an 
animation’s background

• Generally works well only with monochrome graphics

• Useful for transient effects like rubberbanding — but 
these days even that application of XOR animation is 
fading away

• Sample old-school arcade game: Berserk

Sprite animation: Blocks of memory organized into 
individual animation units called “sprites”

• Copy background to a buffer

• Paint sprite (usually a memory dump with the 
exception of a designated “background” color)

• To move, paint the background back, then repeat

• Can be used with a single display buffer, or combined 
with double buffering to reduce flicker

• Basis for a whole generation of video games, such as 
Arkanoid, the Donkey Kongs, Rastan…the list goes on 
and on



• Since colors are just numbers after all, it stands to 
reason that manipulating these numbers somehow 
will result in some recognizable color effects

• Rudimentary image processing is thus a matter of 
implementing a function from some pixel to another, 
in some meaningful way

• Simplest form: function that takes a single pixel and 
produces a new pixel value

Basic Image Manipulation

• Simple examples:

Filtering — showing only the red, green, or blue 
elements of an image

Brightness and contrast — manipulating all three 
components in a coordinated fashion

Bit-level effects — combining two images using bit-
oriented operations

• More advanced form: function takes into account a 
pixel’s “neighbors” — the 8 or more pixels 
surrounding it — to determine its new value

Ultimately based on the same principle; just different 
(more) input


