Graphics = Light
= Color = Memory

® Light-emitting media
< CRT: cathode ray tube — phosphors excited by electrons

< LCD: liquid crystal display — liquid crystals in a grid; current controls
polarization and thus controls what colors can be seen

< Projected LCD: LCD image is magnified before it reaches the viewer
< Plasma: noble gas in between two glass sheets, also affiliated with an

electrode grid; current excites the gas to emit light

® Light-emitting media use an additive approach to
color: add a color by adding light in that color (i.e.,
white = light in all colors)

® Light-reflecting media (print)

< Ink-jet: fine spray of pigment onto display medium (most of the time,
paper)

< Thermal transfer: heat changes pigment on special paper

© Laser: laser beam “etches” image on a drum coated with toner

® Light-reflecting media use a subtractive approach to
color: pigments absorb unwanted colors until only the
desired color reflects back (i.e., white = no pigment)

Vector Displays

® [ine-based: Electron gun traces lines directly from
point A to point B

® Based on oscilloscope technology — so pretty much
restricted to CRT technology

® Made a lot of sense back when memory was
expensive...

... but what does memory have to do with graphics
anyway!

Raster Displays

® Grid-based: Display is a two-dimensional raster (array)
of individual picture elements (pixels) in memory

< This memory block goes by many names: frame buffer, graphics
memory, VRAM

® Display devices transfer or map this 2D grid onto
their specific type of display

® CRT: electron gun scans the entire screen horizontally
and vertically, exciting the appropriate phosphor that
corresponds to its grid location

< Phosphors fade, so watch out for flicker

® [CD/projected LCD: grid of crystals maps to a memory
location

® Plasma: ditto, but this time the pixels correspond to
cells of gas

® Note how LCD and plasma displays are inherently
raster-oriented

® So, if pixels are memory, what do they hold?

Mapping Memory to Pixels

® The “value” of a pixel is its color

® The way a pixel represents color determines the
amount of memory required by that pixel

® Linear memory is mapped into two dimensions:
requires a width and height

¢ Different mapping schemes, such as linear or planar

® Pixel ratio is a pixel’s aspect ratio — because
sometimes pixels aren’t square

red | black | green| puce

red | black | blue |green

black | red | lime | tan

cyan | white [white | black

® Example: a 4x4 frame buffer/display

¢ Frame buffer size (in units of memory) depends on
the size of each pixel

® Non-CRT display hardware devices typically have a
native resolution, corresponding to the grid size of its
physical elements (liquid crystals, cells of gas)

Pixels and Color

The three-color model is used to quantify digital light-
emitted color: colors are a triple of (red, green, blue)

® Light-emitted = additive color, so all colors can be
represented by a combination of red, green, and blue

® Individual color values range from “none” to “full
blast,” such as ranging from 0.0 to 1.0 in floating
point, 0 to 255 for 8-bit colors, and so on

® Studies have shown that the human eye can generally
perceive no more than 256 levels of a specific hue

® So if pixels map to some (R, G, B) tuple, how is this
tuple stored in memory!?

¢ Direct representation: the pixel is the tuple
e For | byte per color, we need 3 bytes per pixel
® For monochrome, we need | bit per pixel
¢ Indexed representation: a pixel in memory is an index
to a color lookup table (a.k.a. LUT or palette)
® Typically described as “simultaneous i out of n possible colors.”
® | — amount of memory occupied by a pixel

® n — amount of memory occupied by a color

® Catch phrases like “5.0 megapixels” or “128M of
graphics memory” ultimately owe their precise
technical meaning to how pixels map to memory

Old-School Animation:
“Close to the lron”

® Before full-frame animation became practical,
computer graphics animation techniques were very
reliant on knowledge of how pixels corresponded to
physical memory

® Harder and harder to find real-world examples of
these older animation techniques; perhaps the best
place at this point would be in emulators of older
arcade/computer games

Palette animation: relies on indexed/indirect method of
representing computer graphics — image stays the
same, and only the palette changes

0
color4 color5 color 6 é
\ / / 3
4
A, :
6
A 7
color 7
Rotate among these
@\ palettes in turn.
\ \\ le old-school
color 0 color | color2 color3 Sample old-schoo

arcade game: Zaxxon

XOR-based animation: Based on the exclusive-or
equality ((a xor b) xor b) = a

If you XOR a pixel with another, then XOR-ing that
pixel again restores the previous value

Requires no additional memory to “remember” an
animation’s background

Generally works well only with monochrome graphics

Useful for transient effects like rubberbanding — but
these days even that application of XOR animation is
fading away

Sample old-school arcade game: Berserk

Sprite animation: Blocks of memory organized into
individual animation units called “sprites”

Copy background to a buffer

Paint sprite (usually a memory dump with the
exception of a designated “background” color)

To move, paint the background back, then repeat

Can be used with a single display buffer, or combined
with double buffering to reduce flicker

Basis for a whole generation of video games, such as
Arkanoid, the Donkey Kongs, Rastan...the list goes on
and on

Basic Image Manipulation

® Since colors are just numbers after all, it stands to
reason that manipulating these numbers somehow
will result in some recognizable color effects

® Rudimentary image processing is thus a matter of
implementing a function from some pixel to another,
in some meaningful way

e Simplest form: function that takes a single pixel and
produces a new pixel value

® Simple examples:

¢ Filtering — showing only the red, green, or blue
elements of an image

¢ Brightness and contrast — manipulating all three
components in a coordinated fashion

¢ Bit-level effects — combining two images using bit-
oriented operations

® More advanced form: function takes into account a
pixel’s “neighbors” — the 8 or more pixels
surrounding it — to determine its new value

¢ Ultimately based on the same principle; just different
(more) input

