
Lights, Camera, Action!

• Interestingly, this cliché is actually a very good match 
for the “next step” in learning OpenGL:

Setting up lighting effects in OpenGL

Controlling and positioning the “camera” for your 
3D scene

Intercepting user activity and reacting to it

• Relevant Nate Robins tutors for these topics are 
projection, transformation, lightmaterial, and lightposition

glColor*() is “Absolute” 
Color

• By “absolute” color we mean: independent of lighting

• In the real world, perceived color is highly dependent 
on the lighting environment

red object under white light looks red

cyan object under green light looks green

yellow object under red light looks — gasp! — red

blue object under cyan light looks blue

red object under blue light looks black…etc.

• In OpenGL, we’ll need glMaterial*() and glLight*()



The OpenGL Light Model

• Based on, but not the same as real world lighting

Food for thought: why not?

• Light is broken up into three components:

Ambient: Light that is so scattered as to appear to be 
coming from all directions and going in all directions

Diffuse: Light coming from a specific direction

Specular: Light that is reflected back in a focused 
direction; affects the perception of “shininess”

• A light source emits light, defined in terms of these 
three component colors

A minimum of 8 light sources (GL_LIGHT0 to 
GL_LIGHT7), and they can be turned on or off 
individually at any time

• A material absorbs or reflects light, again defined in 
terms of these three component colors

• When doing lighting in OpenGL, objects/vertices no 
longer use plain color; they are given a material

• Lighting (and therefore shading) in OpenGL is based 
on the interaction of light sources on materials, 
according to combinations of their respective 
ambient, diffuse, and specular components



• Define your model so that it captures the data that 
influences the 3D environment

light sources: colors, positions, directions

material settings: colors, other properties

• Translate your internal settings into OpenGL with:

glEnable(GL_LIGHTING) — activate lighting

glEnable(GL_LIGHT0) — turn on/off light sources

glLight*() — configure light sources

Setting Up a Lit Scene

• Prepare your geometric model to interact properly 
with lighting

Normal vectors using glNormal*()

• For now, suffice it to say that these control how 
light reflects off a polygon; we’ll tackle these in 
more detail later in the course

• The GLUT quickie shapes do this for you 
already; if you build your own objects, you’ll need 
to do this yourself

Ambient, diffuse, and specular material properties 
using glMaterial*()



Material Details
void glMaterialf (GLenum face, GLenum pname, GLfloat param);

void glMaterialfv (GLenum face, GLenum pname, const GLfloat *params);
void glMateriali (GLenum face, GLenum pname, GLint param);

void glMaterialiv (GLenum face, GLenum pname, const GLint *params);

Which material property?

GL_AMBIENT

GL_DIFFUSE

GL_AMBIENT_AND_DIFFUSE

GL_SPECULAR

GL_SHININESS

GL_EMISSION

Which side of the current face?

GL_FRONT

GL_BACK

GL_FRONT_AND_BACK
Set the property to what value?

RGBA most of the time; for 

GL_SHININESS, a single 

scalar value from 0 to 128 (128 

being “shiniest”)
“combo” properties

Light Details
void glLightf (GLenum light, GLenum pname, GLfloat param);

void glLightfv (GLenum light, GLenum pname, const GLfloat *params);
void glLighti (GLenum light, GLenum pname, GLint param);

void glLightiv (GLenum light, GLenum pname, const GLint *params);

Which light?

GL_LIGHT0 to 

GL_LIGHT7

…some implementations 

of OpenGL may have 

more Which light property?

GL_AMBIENT

GL_DIFFUSE

GL_SPECULAR

GL_POSITION

GL_*_ATTENUATION

GL_SPOT_*

Set the property to what value?

RGBA most of the time; for 

GL_POSITION, an (x, y, z, w) 

tuple, w = 0 implies direction 

instead of position; attenuation 

are scalars, and spotlight values 

are scalars except for 

GL_SPOT_DIRECTION



Even More Details

• While glLight*() and glMaterial*() specify the 
parameters for OpenGL’s lighting/shading 
calculations, there are also configurable options on 
how to do these calculations

• This tweaking can be done with glLightModel*() — 
check the red book for details

• In general, the defaults for the light model will suffice

• OpenGL also supports custom shaders, to really 
control how light interacts with your materials

The OpenGL Camera

• Positioning the camera is pretty much a single 
function:

gluLookAt(eyeX, eyeY, eyeZ, centerX, centerY, 

centerZ, upX, upY, upZ);

• eye is the camera’s location; center is where the 
camera is looking; up is the camera’s orientation

• That’s all — call it before drawing and you’re done

• Point to ponder: note the glu prefix — the “camera” 
is not a base OpenGL entity!



Intercepting User Activity

There is pretty much a single consistent pattern for 
reading and responding to user activity with GLUT:

1. Register your handler functions by event type 
(mouse, keyboard, etc.)

2. Implement your handler functions to interpret the 
activity the way you wish

3. Once interpreted, call the “model” functions that 
change the state of your world

4. Request a repaint — glutPostRedisplay()

• Mouse functions:

glutMouseFunc() — mouse button activity

glutMotionFunc() — motion with button(s) down

glutPassiveMotionFunc() — motion without 
buttons pressed

• Keyboard functions:

glutKeyboardFunc() — conventional keys

glutSpecialFunc() — “special” keys (arrows, etc.)

• And of course, the all-important glutIdleFunc()

• And many more — check glut.h


