
Modeling Light

• Based on, but not the same as, real world lighting

Food for thought: why not?

• Thus, whatever you do with light in computer graphics,
especially in real time, is ultimately an approximation

• Beyond some core principles (see below), modeling
light is a pretty wide-open game, grounded in physics
but in some ways ultimately modulated by aesthetics
and practicality

• A lighting model computes the light that hits a polygon,
then computes how that polygon reflects this light

• Multiple light sources on a polygon are cumulative:
i.e., their RGB values add up, clamped at 1.0

• A material absorbs or reflects light, based on its own
color(s) and other properties: this reflection is
equivalent to multiplying the light’s and material’s
RGB values (note how having a 0.0–1.0 range is
particularly helpful here)

Core Calculations

The former fixed function OpenGL light model modeled
light as three main components:

• Ambient—Light that is so scattered as to appear to be
coming from all directions and going in all directions

• Diffuse—Light coming from either a specific direction or
a point in space

• Specular—Light that is reflected back in a focused
direction; affects the perception of “shininess”

From the Fixed
Function Model

• Define your objects so that they capture the data that
affect how things get lit

Light sources: Colors, positions, directions

Material settings: Colors, other properties

• Use these settings to perform color calculations within
your shaders

• An initial approach would be to assign lit color per
vertex, then having OpenGL interpolate the rest

Setting Up a Lit Scene

• One of the most important geometric aspects of many
lighting approaches is the normal vector: that is, the
“direction” that a polygon is facing, expressed as (duh)
a vector

• The importance of this value makes intuitive sense—
see sunrise, noon, and sunset

• Because we care mainly about direction when dealing
with normal, they are generally worked with as unit
vectors (i.e., lengths equal to 1)

The New “Normal”

Other Key Issues
Many other issues can get involved, all of which translate
into additional shader variables, logic, and computation:

• Attenuation—Does brightness decrease as a function of
distance, and if so, by how much?

• Physical properties—“Shininess” for specular reflection
is one thing, but there can be many more

• Local vs. global lighting—For simplicity, we calculate
lighting per object or vertex; in reality, lit objects also
affect each other

Fixed Function “Recipes”

Acknowledging that these categories are all approximations
—they abstract out various effects of the “one true”
Rendering Equation—these are typically what’s done for the
original OpenGL fixed-function categories

As a prerequisite, these approaches all presume the
presence of some base color—either a uniform color, a
varying color interpolated from a color array, or a color that
is derived from a texture map at given texture coordinates…
or a combination of all three; then, given this base color:

Ambient Light

Note again that the guiding principle for these calculations
is that multiple sources of light add up to a final “light
contribution,” and that value is multiplied to a surface/
polygon/material’s base color

• Typically ambient light is modeled as a single RGB
value since it is, well, ambient (if you did have
multiple sources, just add them up as noted above)

• Component-multiply that final RGB value with the
color value of the vertex or pixel

Diffuse Light

For diffuse light, you must have normal vectors (one per
vertex) and light source position & color:

• Normal vectors can be computed by forming vectors
from the vertices of each triangle and computing their
cross product (see “Normals” in Ghayour/Cantor)

• Apply the instance matrix to the vertex, get the vector
from the vertex to the light source, then determine the
brightness based on the angle between the normal and
light vectors (via dot product—cosine law)• We use the dot product to quantitatively define the magnitude of a vector v (|v|):

|v| =
p

v · v =
p

x2
v + y2

v + z2
v

• The dot product is also the basis for determining the angle between two vectors:

cos ✓ =
u · v
|u||v| (1)

(fun exercise: how is this derived?)

• Thus, it follows that two vectors u and v are perpendicular or orthogonal — u ? v —
if and only if u · v = 0.

• Also due to (1), the orthogonal projection of u onto v (as illustrated in Figure 4.14 of
Angel) has magnitude:

|u| cos ✓ =
u · v
|v| (2)

• In vector form, the projection of u onto v is just v with the magnitude calculated in
(2). Thus, this vector is:

(
u · v
|v|) Uv = (u · v

|v|) Uv = (u · Uv) Uv

Are you loving this stu↵ yet?

4.4 The Cross Product

• The cross product of two three-dimensional vectors u and v — written as u ⇥ v —
yields a vector w that is perpendicular to both u and v, i.e. u · w = v · w = 0:

u⇥ v = hyuzv � zuyv, zuxv � xuzv, xuyv � yuxvi

It’s easy to mix the combinations up! A mnemonic is shown in Figure 2. Multiply
down the dotted lines, then subtract the product from the opposing dotted line.

• The resulting perpendicular vector follows the convention of a right-handed coordinate
system.

• Note that the cross product is not commutative! The vectors yielded by u ⇥ v and
v⇥ u are not the same — though of course, by definition, they are both perpendicular
to u and v.

• A vector that is perpendicular to a given set of vectors is called a normal to those vec-
tors. Yes, there is another potential point of confusion here — “normalization” means
the derivation of a unit vector, and “normal” means a vector that is perpendicular to
other vectors.

6

The secret ingredient:

Notice that the smaller the angle
is, the brighter the light—a
perfect match for cosine!

This value scales the amount of
light contribution

Make sure to also apply the
instance matrix to the normal
vector—but without translation
(i.e., make the 4th element a zero)

Use unit vectors (normalize function
in GLSL) so that you don’t have to
deal with this denominator

• We use the dot product to quantitatively define the magnitude of a vector v (|v|):

|v| =
p

v · v =
p

x2
v + y2

v + z2
v

• The dot product is also the basis for determining the angle between two vectors:

cos ✓ =
u · v
|u||v| (1)

(fun exercise: how is this derived?)

• Thus, it follows that two vectors u and v are perpendicular or orthogonal — u ? v —
if and only if u · v = 0.

• Also due to (1), the orthogonal projection of u onto v (as illustrated in Figure 4.14 of
Angel) has magnitude:

|u| cos ✓ =
u · v
|v| (2)

• In vector form, the projection of u onto v is just v with the magnitude calculated in
(2). Thus, this vector is:

(
u · v
|v|) Uv = (u · v

|v|) Uv = (u · Uv) Uv

Are you loving this stu↵ yet?

4.4 The Cross Product

• The cross product of two three-dimensional vectors u and v — written as u ⇥ v —
yields a vector w that is perpendicular to both u and v, i.e. u · w = v · w = 0:

u⇥ v = hyuzv � zuyv, zuxv � xuzv, xuyv � yuxvi

It’s easy to mix the combinations up! A mnemonic is shown in Figure 2. Multiply
down the dotted lines, then subtract the product from the opposing dotted line.

• The resulting perpendicular vector follows the convention of a right-handed coordinate
system.

• Note that the cross product is not commutative! The vectors yielded by u ⇥ v and
v⇥ u are not the same — though of course, by definition, they are both perpendicular
to u and v.

• A vector that is perpendicular to a given set of vectors is called a normal to those vec-
tors. Yes, there is another potential point of confusion here — “normalization” means
the derivation of a unit vector, and “normal” means a vector that is perpendicular to
other vectors.

6

Specular Light
The “shine” or “glare” that is associated with specular light
is based on how directly reflected light gets into your eye—
the more directly reflected, the “shinier” it is

This “shine” diminishes quickly—this can be simulated by
a shininess value that we raise as an exponent

• So in additional to normal vectors and light data, we’ll
want a shininess parameter for customization

• In terms of calculations, we now want to factor in the
light vector’s reflection off the normal vector

We use the dot product trick again
in order to determine how “bright”
the reflection is in relation to the
eye (which is the origin, so
conveniently the eye “vector” is
the vertex itself!)

Further, we make that brightness
sharper by raising it to an
exponent—the further away from
1.0, the more quickly it recedes

• We use the dot product to quantitatively define the magnitude of a vector v (|v|):

|v| =
p

v · v =
p

x2
v + y2

v + z2
v

• The dot product is also the basis for determining the angle between two vectors:

cos ✓ =
u · v
|u||v| (1)

(fun exercise: how is this derived?)

• Thus, it follows that two vectors u and v are perpendicular or orthogonal — u ? v —
if and only if u · v = 0.

• Also due to (1), the orthogonal projection of u onto v (as illustrated in Figure 4.14 of
Angel) has magnitude:

|u| cos ✓ =
u · v
|v| (2)

• In vector form, the projection of u onto v is just v with the magnitude calculated in
(2). Thus, this vector is:

(
u · v
|v|) Uv = (u · v

|v|) Uv = (u · Uv) Uv

Are you loving this stu↵ yet?

4.4 The Cross Product

• The cross product of two three-dimensional vectors u and v — written as u ⇥ v —
yields a vector w that is perpendicular to both u and v, i.e. u · w = v · w = 0:

u⇥ v = hyuzv � zuyv, zuxv � xuzv, xuyv � yuxvi

It’s easy to mix the combinations up! A mnemonic is shown in Figure 2. Multiply
down the dotted lines, then subtract the product from the opposing dotted line.

• The resulting perpendicular vector follows the convention of a right-handed coordinate
system.

• Note that the cross product is not commutative! The vectors yielded by u ⇥ v and
v⇥ u are not the same — though of course, by definition, they are both perpendicular
to u and v.

• A vector that is perpendicular to a given set of vectors is called a normal to those vec-
tors. Yes, there is another potential point of confusion here — “normalization” means
the derivation of a unit vector, and “normal” means a vector that is perpendicular to
other vectors.

6

u = < xu , yu , zu > xu yu

v = < xv , yv , zv > xv yv

1 2 3

Figure 2: A visual way to remember the cross product of two 3D vectors u and v.

u

n

θ θ

r

Figure 3: Reflection of u about a normal vector n.

• The reflection r of a vector u along some presumed normal n (see Figure 3) can be
derived as follows:

u = r + projection(u, n) + projection(u, n)

r = u� 2 projection(u, n)

r = u� 2 (u · Un) Un

Typically, n is derived from a cross product of two other vectors that define the plane
from which u is being reflected.

7

The new secret:

u = < xu , yu , zu > xu yu

v = < xv , yv , zv > xv yv

1 2 3

Figure 2: A visual way to remember the cross product of two 3D vectors u and v.

u

n

θ θ

r

Figure 3: Reflection of u about a normal vector n.

• The reflection r of a vector u along some presumed normal n (see Figure 3) can be
derived as follows:

u = r + projection(u, n) + projection(u, n)

r = u� 2 projection(u, n)

r = u� 2 (u · Un) Un

Typically, n is derived from a cross product of two other vectors that define the plane
from which u is being reflected.

7

• We use the dot product to quantitatively define the magnitude of a vector v (|v|):

|v| =
p

v · v =
p

x2
v + y2

v + z2
v

• The dot product is also the basis for determining the angle between two vectors:

cos ✓ =
u · v
|u||v| (1)

(fun exercise: how is this derived?)

• Thus, it follows that two vectors u and v are perpendicular or orthogonal — u ? v —
if and only if u · v = 0.

• Also due to (1), the orthogonal projection of u onto v (as illustrated in Figure 4.14 of
Angel) has magnitude:

|u| cos ✓ =
u · v
|v| (2)

• In vector form, the projection of u onto v is just v with the magnitude calculated in
(2). Thus, this vector is:

(
u · v
|v|) Uv = (u · v

|v|) Uv = (u · Uv) Uv

Are you loving this stu↵ yet?

4.4 The Cross Product

• The cross product of two three-dimensional vectors u and v — written as u ⇥ v —
yields a vector w that is perpendicular to both u and v, i.e. u · w = v · w = 0:

u⇥ v = hyuzv � zuyv, zuxv � xuzv, xuyv � yuxvi

It’s easy to mix the combinations up! A mnemonic is shown in Figure 2. Multiply
down the dotted lines, then subtract the product from the opposing dotted line.

• The resulting perpendicular vector follows the convention of a right-handed coordinate
system.

• Note that the cross product is not commutative! The vectors yielded by u ⇥ v and
v⇥ u are not the same — though of course, by definition, they are both perpendicular
to u and v.

• A vector that is perpendicular to a given set of vectors is called a normal to those vec-
tors. Yes, there is another potential point of confusion here — “normalization” means
the derivation of a unit vector, and “normal” means a vector that is perpendicular to
other vectors.

6

! (cos !)shininess

Language Notes

• Remember that matrix multiplications are 4×4 so you
will need to use vec4 for those

• However vertex and vector operations use vec3

• Converting from vec4 to vec3 means post-pending a
component suffix like .xyz or .rgb

• Converting from vec3 to vec4 uses the expression
vec4(x, y, z, w)—where w is almost always 1.0
except when transforming the normal vector—use 0.0
there because you want to lose translations

The helper functions and operations that you need for
lighting are already built into GLSL—you just have to put
them together correctly:

• * indicates scalar-vector or matrix-vector
multiplication—inferred based on data type

• normalize will compute the unit vector

• dot will compute the dot product (cosine of the angle
between two unit vectors)—remember that this is a
scalar value (data type float in GLSL)

• max will calculate the maximum of given values

• pow will raise a value to a given exponent

Variations on the Theme
The smooth vs. faceted look comes from how the normal
vectors are computed—because normals are given per
vertex, one produces “smoothness” by making a vertex’s
normal be the average of the normals of its triangles vs.
precisely the normal of each triangle:

smooth vs. faceted

The other variation lies in whether the lighting is done per
vertex (in the vertex shader) or per pixel (in the fragment
shader)—a.k.a. Gouraud vs. Phong shading

• With Gouraud (per-vertex) shading, the color is
computed per vertex and that color is then interpolated
across the triangles (remember the Dye Hards?)

• With Phong (per-pixel) shading, the lighting
calculation is done for every pixel—higher cost but
generally viewed as more realistic-looking

• A web image search on “Gouraud vs. Phong shading”
will yield multiple visual examples

(you would do this by passing the normal, vertex, and light values as varying
variables—they are interpolated automatically and you can then do the
lighting calculations in the fragment shader)

