
Modeling Light

• Based on, but not the same as, real world lighting 

Food for thought: why not? 

• Thus, whatever you do with light in computer graphics, 
especially in real time, is ultimately an approximation 

• Beyond some core principles (see below), modeling 
light is a pretty wide-open game, grounded in physics 
but in some ways ultimately modulated by aesthetics 
and practicality

• A lighting model computes the light that hits a polygon, 
then computes how that polygon reflects this light 

• Multiple light sources on a polygon are cumulative: 
i.e., their RGB values add up, clamped at 1.0 

• A material absorbs or reflects light, based on its own 
color(s) and other properties: this reflection is 
equivalent to multiplying the light’s and material’s 
RGB values (note how having a 0.0–1.0 range is 
particularly helpful here)

Core Calculations



The former fixed function OpenGL light model modeled 
light as three main components: 

• Ambient—Light that is so scattered as to appear to be 
coming from all directions and going in all directions 

• Diffuse—Light coming from either a specific direction or 
a point in space 

• Specular—Light that is reflected back in a focused 
direction; affects the perception of “shininess”

From the Fixed 
Function Model

• Define your objects so that they capture the data that 
affect how things get lit 

Light sources: Colors, positions, directions 

Material settings: Colors, other properties 

• Use these settings to perform color calculations within 
your shaders 

• An initial approach would be to assign lit color per 
vertex, then having OpenGL interpolate the rest

Setting Up a Lit Scene



• One of the most important geometric aspects of many 
lighting approaches is the normal vector: that is, the 
“direction” that a polygon is facing, expressed as (duh) 
a vector 

• The importance of this value makes intuitive sense—
see sunrise, noon, and sunset 

• Because we care mainly about direction when dealing 
with normal, they are generally worked with as unit 
vectors (i.e., lengths equal to 1)

The New “Normal”

Other Key Issues
Many other issues can get involved, all of which translate 
into additional shader variables, logic, and computation:  

• Attenuation—Does brightness decrease as a function of 
distance, and if so, by how much? 

• Physical properties—“Shininess” for specular reflection 
is one thing, but there can be many more 

• Local vs. global lighting—For simplicity, we calculate 
lighting per object or vertex; in reality, lit objects also 
affect each other



Fixed Function “Recipes”

Acknowledging that these categories are all approximations
—they abstract out various effects of the “one true” 
Rendering Equation—these are typically what’s done for the 
original OpenGL fixed-function categories 

As a prerequisite, these approaches all presume the 
presence of some base color—either a uniform color, a 
varying color interpolated from a color array, or a color that 
is derived from a texture map at given texture coordinates…
or a combination of all three; then, given this base color:

Ambient Light

Note again that the guiding principle for these calculations 
is that multiple sources of light add up to a final “light 
contribution,” and that value is multiplied to a surface/
polygon/material’s base color 

• Typically ambient light is modeled as a single RGB 
value since it is, well, ambient (if you did have 
multiple sources, just add them up as noted above) 

• Component-multiply that final RGB value with the 
color value of the vertex or pixel



Diffuse Light

For diffuse light, you must have normal vectors (one per 
vertex) and light source position & color: 

• Normal vectors can be computed by forming vectors 
from the vertices of each triangle and computing their 
cross product (see “Normals” in Ghayour/Cantor) 

• Apply the instance matrix to the vertex, get the vector 
from the vertex to the light source, then determine the 
brightness based on the angle between the normal and 
light vectors (via dot product—cosine law)• We use the dot product to quantitatively define the magnitude of a vector v (|v|):
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v · v =
p

x2
v + y2

v + z2
v

• The dot product is also the basis for determining the angle between two vectors:

cos ✓ =
u · v
|u||v| (1)

(fun exercise: how is this derived?)

• Thus, it follows that two vectors u and v are perpendicular or orthogonal — u ? v —
if and only if u · v = 0.

• Also due to (1), the orthogonal projection of u onto v (as illustrated in Figure 4.14 of
Angel) has magnitude:

|u| cos ✓ =
u · v
|v| (2)

• In vector form, the projection of u onto v is just v with the magnitude calculated in
(2). Thus, this vector is:

(
u · v
|v| ) Uv = ( u · v

|v| ) Uv = (u · Uv) Uv

Are you loving this stu↵ yet?

4.4 The Cross Product

• The cross product of two three-dimensional vectors u and v — written as u ⇥ v —
yields a vector w that is perpendicular to both u and v, i.e. u · w = v · w = 0:

u⇥ v = hyuzv � zuyv, zuxv � xuzv, xuyv � yuxvi

It’s easy to mix the combinations up! A mnemonic is shown in Figure 2. Multiply
down the dotted lines, then subtract the product from the opposing dotted line.

• The resulting perpendicular vector follows the convention of a right-handed coordinate
system.

• Note that the cross product is not commutative! The vectors yielded by u ⇥ v and
v⇥ u are not the same — though of course, by definition, they are both perpendicular
to u and v.

• A vector that is perpendicular to a given set of vectors is called a normal to those vec-
tors. Yes, there is another potential point of confusion here — “normalization” means
the derivation of a unit vector, and “normal” means a vector that is perpendicular to
other vectors.
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The secret ingredient:

Notice that the smaller the angle 
is, the brighter the light—a 
perfect match for cosine! 

This value scales the amount of 
light contribution 

Make sure to also apply the 
instance matrix to the normal 
vector—but without translation 
(i.e., make the 4th element a zero)

Use unit vectors (normalize function 
in GLSL) so that you don’t have to 
deal with this denominator
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Specular Light
The “shine” or “glare” that is associated with specular light 
is based on how directly reflected light gets into your eye—
the more directly reflected, the “shinier” it is 

This “shine” diminishes quickly—this can be simulated by 
a shininess value that we raise as an exponent 

• So in additional to normal vectors and light data, we’ll 
want a shininess parameter for customization 

• In terms of calculations, we now want to factor in the 
light vector’s reflection off the normal vector

We use the dot product trick again 
in order to determine how “bright” 
the reflection is in relation to the 
eye (which is the origin, so 
conveniently the eye “vector” is 
the vertex itself!) 

Further, we make that brightness 
sharper by raising it to an 
exponent—the further away from 
1.0, the more quickly it recedes
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v = < xv , yv , zv > xv  yv
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Figure 2: A visual way to remember the cross product of two 3D vectors u and v.
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Figure 3: Reflection of u about a normal vector n.

• The reflection r of a vector u along some presumed normal n (see Figure 3) can be
derived as follows:

u = r + projection(u, n) + projection(u, n)

r = u� 2 projection(u, n)

r = u� 2 (u · Un) Un

Typically, n is derived from a cross product of two other vectors that define the plane
from which u is being reflected.
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The new secret:
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Language Notes

• Remember that matrix multiplications are 4×4 so you 
will need to use vec4 for those 

• However vertex and vector operations use vec3 

• Converting from vec4 to vec3 means post-pending a 
component suffix like .xyz or .rgb 

• Converting from vec3 to vec4 uses the expression 
vec4(x, y, z, w)—where w is almost always 1.0 
except when transforming the normal vector—use 0.0 
there because you want to lose translations

The helper functions and operations that you need for 
lighting are already built into GLSL—you just have to put 
them together correctly: 

• * indicates scalar-vector or matrix-vector 
multiplication—inferred based on data type 

• normalize will compute the unit vector 

• dot will compute the dot product (cosine of the angle 
between two unit vectors)—remember that this is a 
scalar value (data type float in GLSL) 

• max will calculate the maximum of given values 

• pow will raise a value to a given exponent



Variations on the Theme
The smooth vs. faceted look comes from how the normal 
vectors are computed—because normals are given per 
vertex, one produces “smoothness” by making a vertex’s 
normal be the average of the normals of its triangles vs. 
precisely the normal of each triangle:

smooth vs. faceted

The other variation lies in whether the lighting is done per 
vertex (in the vertex shader) or per pixel (in the fragment 
shader)—a.k.a. Gouraud vs. Phong shading 

• With Gouraud (per-vertex) shading, the color is 
computed per vertex and that color is then interpolated 
across the triangles (remember the Dye Hards?) 

• With Phong (per-pixel) shading, the lighting 
calculation is done for every pixel—higher cost but 
generally viewed as more realistic-looking 

• A web image search on “Gouraud vs. Phong shading” 
will yield multiple visual examples

(you would do this by passing the normal, vertex, and light values as varying 
variables—they are interpolated automatically and you can then do the 
lighting calculations in the fragment shader)


