
Texture Mapping

• Progression of rendering sophistication:

Absolute color, without shading due to lights

Lighting results in a new approach to setting color (i.e. “materials”
with many attributes)

• Textures add one more layer to the mix

In its most generic form, a texture is a separate data source of color or
material information

Texture mapping is the act of determining what color from this data
source should be applied to a particular point in the corresponding
3D object

texture coordinates

3D object
coordinates

image source: file,
memory

General Steps

• Load/initialize the texture data

Typically a 2D image, but can be 1D or 3D as well

Typically read from a file, but of course this requires
image file decoding libraries (like Java’s ImageIO API)

• Note that the file-reading phase is distinct from
texture mapping in general!

• For testing purposes, you can always try building
a texture in memory first

• Next, set how the texture colors are “converted”
into the 3D space

Is texture color == final 3D color?

Should texture color be affected by lighting?

Should texture color be blended with any other
color?

• Set how the texture space “maps” into the 3D space

Analogous to applying a “cookie cutter” or “stencil”
to the texture data that corresponds to the shape
that is being drawn by glVertex*()

• State machine, as usual — any texture-related values
that you set will remain active until you explicitly set
them to something else

• Textures are “objects” — you need to ask OpenGL
to make room for them first with glGenTextures()

• OpenGL needs to know how to “read” the image
data that you will use for a texture

glPixelStore*() sets how the bytes are read into pixels

Part of glTexImage2D() specifies the format of those pixels

OpenGL Texture Specifics

• Texture settings are provided in various ways:

glTexParameter*() — like glMaterial*() and glLight*()

glMatrixMode(GL_TEXTURE) — texture transforms

• Match the texture to its core image data:
glTexImage2D()

• Specify the “current” texture: glBindTexture()

• Don’t panic! Texture mapping is one of those
techniques that really requires a deeper understanding
of computer graphics — particularly 2D image
representation — before it makes complete sense

Texture-related abilities that may be of interest…

• OpenGL provides a huge variety of ways to interpret
byte sequences into texture data

• There is also a correspondingly huge variety of ways
to convert the “raw” color in a texture to the “final”
color in the object

• Subimages — instead of loading up multiple textures,
load a large composite image as a single texture, and
grab only subsets of that image

Other Texture Features

• The textures you see here and in the sample code are
two-dimensional; 3D textures are possible, and these
map into 3D spaces!

• Lighting options — particularly specular lighting: before
or after texture mapping?

• Mipmaps allow some degree of resolution
independence — store multiple sizes of the same
texture, depending on the size of the 3D object

We won’t go into these in detail, but they are listed
here in case you have an individual or personal interest
in exploring them further (because one or more of
these specifically apply to your project, for example).

• Conceptually very simple; checking out the Nate
Robins tutorial (or reading the red book) should be
sufficient to learn how to use it

• Complications arise mainly in the “fog algorithm,” not
in how to use the feature

In the “Because We Can”
Department: Fog

