
Concurrency Control

• The main challenge with concurrency and transactions
is to preserve isolation — each transaction operates as
if it were the only one running on a database

• We’ve seen how isolation can be preserved through
serializability — scheduling the operations in a
transaction so that the schedule is equivalent to one
where the transactions are executed in sequence

• The concepts here assume that transactions are
relatively brief; advanced approaches dealing with long-
duration transactions are beyond this scope

Locks

• Locks are a time-honored mechanism for enforcing
mutual exclusion — that is, allowing at most one
transaction to access a data item at any given moment

• The mutual exclusion results in the desired isolation

• Two main lock modes:

Shared-mode lock: a transaction can read, but not
write, some data item Q (denoted by S)

Exclusive-mode lock: a transaction can both read and
write item Q (denoted by X)

Basic Lock Sequence

At its most basic level, the locking sequence follows
these steps for some transaction T:

1. Transaction T requests a lock for data item Q
(written as lock-S(Q) for shared locks and lock-X(Q)
for exclusive locks)

2. Concurrency-control manager grants the lock
request if the requested lock is compatible with
currently active locks; otherwise T has to wait

3. When lock is granted, T proceeds, calling unlock(Q)
when it no longer needs the lock

Lock Compatibility

• Very straightforward — only shared locks on a specific
data item Q are compatible, as seen below

• The upshot: we can have any number of shared locks
on Q, but once an exclusive lock is requested, all
shared locks have to be released first, then no other
locks can be granted until the exclusive lock is released

comp S X

S true false

X false false

Locking Issues

• Unlocking Q right after a transaction Ti is done with it
risks inconsistency — other transactions Tj may see an
inconsistent big picture before Ti is totally done

• On the other hand, if Ti locks Q for too long, it will
force another transaction Tj to wait for unlock(Q) —
but if Tj currently locks another item R that Ti needs
later, then Ti is forced to wait too, resulting in deadlock

• Finally, a transaction may be starved if it needs an
exclusive lock on Q but new transactions keep getting
a shared lock on Q

Locking Protocols

• We prefer deadlock over inconsistency: we can roll
back upon deadlock, but inconsistency leads to errors

• Starvation isn’t too hard to avoid — just give priority
to older lock requests before granting new ones

• Locking protocols state how locks are managed

• Given a locking protocol L: Ti precedes Tj if Tj needs a
lock for which Ti already holds an incompatible lock; a
schedule S is legal under L if you can derive S by
following L; finally, L ensures conflict serializability iff all
legal schedules under L are conflict serializable

Two-Phase Locking

• Two-phase locking is a locking protocol that ensures
serializability (as defined previously)

• The phases involved for a transaction T are:

Growing phase — T may obtain locks, but not release

Shrinking phase — T may release locks, but not obtain

• Following these two phases results in a lock point —
the point in a transaction where it obtains its final lock

• Two-phase locking ensures serializability but does not
completely avoid deadlock

Two-Phase Locking Variations

• Strict two-phase locking: exclusive locks must be held
until after a transaction commits — this additional rule
avoids cascading rollback

• Rigorous two-phase locking: instead of just exclusive
locks, all locks must be held until after commit

• Lock conversions: without them, many transaction
precedences result in serial schedules — we allow
upgrades from shared to exclusive mode during the
growing phase, then allow downgrades from exclusive
to shared during the shrinking phase

Typical Locking Rules

• As you may have noticed, we haven’t been using
explicit lock requests in our SQL — the system
determines this for us, based on the SQL involved

• Here’s a typical algorithm:

A read(Q) becomes lock-S(Q); read(Q);

A write(Q) becomes if (hasShared(Q)) then upgrade(Q);
write(Q) else lock-X(Q); write(Q);

Unlock everything only after the transaction either
commits or aborts

Locking Odds & Ends

• The text includes a blurb on implementing a lock
manager — useful to know, but only absolutely
necessary if you’re implementing a DBMS

• Two-phase locking is necessary and sufficient for
ensuring serializability, and it doesn’t require any
additional information about a transaction

• However, if additional information is available, other
protocols are possible — the text talks about graph-
based locking protocols if you know the order in which
transactions access data items

Timestamp-Based Protocols

• Another approach to concurrency control — execute
transactions according to when they arrive at the
server, vs. when conflicting locks are first acquired

• Assign a timestamp to each incoming transaction Ti
(written as TS(Ti)), either via the system clock or a
logical counter

• Assign two timestamps to each data item Q in the
database: W-timestamp(Q) is the most recent successful
write(Q), and R-timestamp(Q) is the most recent
successful read(Q)

• Use the following protocol:
if Ti requests read(Q) {

if TS(Ti) < W-timestamp(Q) {
rollback;

} else {
read(Q);
R-timestamp(Q) = max(R-timestamp(Q), TS(Ti));

}
}

if Ti requests write(Q) {
if (TS(Ti) < R-timestamp(Q)) || (TS(Ti) < W-timestamp(Q)) {

rollback;
} else {

write(Q);
W-timestamp(Q) = TS(Ti);

}
}

• Restarted transactions get a new timestamp

• Ensures conflict serialziability, avoids deadlock because
waiting is not involved, does not avoid starvation if a
long transaction keeps getting rolled back, requires
some tweaks for recoverability and cascadelessness

• Perform all writes at the end of a transaction, and do
not allow transactions to read the data while they are
being written

• Integrate limited locking: block transactions with
incompatible or conflicting reads until the writing
transaction commits successfully

• Track uncommitted writes: if a transaction read a data
item that is written by other transactions before it, do
not commit that transaction until the writing
transactions have committed (recoverability only)

Recoverable and Cascadeless
Timestamp Protocol Tweaks

• Observation: if TS(Ti) < TS(Tj), and Ti writes Q before
TS(Tj), then we can just ignore that write, since it will
be overwritten by Tj anyway

• Thomas’ write rule is a protocol tweak on the write(Q)
case based on that observation:
...

if TS(Ti) < W-timestamp(Q) {
ignore write(Q);

}
...

• Note how this is based on view serializability instead
of conflict serializability

Thomas’ Write Rule

Validation-Based Protocols

• Split transactions into three phases: read, validation, and
write — where validation is a check to see if a
transaction’s writes won’t trample over others

• Each phase gets a timestamp, and TS(T) is now the
validation timestamp instead of its “arrival” timestamp;
apply timestamp protocol with validation timestamp

• Considered to be optimistic instead of pessimistic —
other protocols force a wait or rollback in any
conflict, but this assumes that everything will be OK
until validation time

Multiple-Granularity Locking

• Implementation/performance issue: allow multiple
layers or scopes for different types of transactions

• Locks of different sizes: rows, tables, entire database

• A granularity hierarchy represents the different lock
levels; a direct lock is explicit, while nodes underneath
the explicit lock are implicitly locked

• Add an intention lock mode that locks nodes above an
item that is explicitly locked

• The multiple-granularity locking protocol create a new
compatibility function that inclodes intention locks

Multiversion Concurrency
Control (MVCC)

• Maintain multiple versions of a database — each new
write(Q) creates a new version of the data without
immediately discarding the prior version

• Associate timestamps with versions: for version k of
data item Q, W-timestamp(Qk) corresponds to when
version k was created, and R-timestamp(Qk) is the
timestamp of the last successful transaction to read Qk

• Associate each transaction with the most recent Qk
that precedes it; all reads come from Qk, and a write(Q)
will only rollback if TS(T) < R-timestamp(Qk)

• All versions older than the oldest transaction in the
system except the most recent one can be discarded

• Reads will never fail in MVCC — matches well with the
tendency of most databases to perform reads way
more often than performing writes

• As is, does not ensure recoverability and
cascadelessness; tweaks similar to those for timestamp
protocols are required

• Multiversion two-phase locking tries to combine MVCC
with two-phase locking: first, separate transactions to
read-only and update categories; then, perform standard
MVCC for read-only transactions and rigorous two-
phase locking for update transactions, with update
transactions updating a version counter

• Through all this, we retained the open issue of
deadlocks — note how we have said that deadlocks
cannot be absolutely avoided in locking protocols

• Two primary approaches:

Deadlock prevention — try to avoid deadlock state in
the first place

Deadlock detection and recovery — allow deadlocks, but
catch and recover from them

• Issues include performance, overhead, rollback effects

Deadlock Handling

Deadlock Prevention

• Different approaches, without a clear winner due to
assorted tradeoffs:

• Lock all data items at one time — suboptimal if actual
use of locked data items is sparse

• Lock items according to a specified data item order —
prevents the locking “loops” that result in deadlock,
but requires a sequencing scheme for data items

• Preemption and rollback: rollback transactions holding
locks according to certain rules (wait-die, wound-wait)

Deadlock Detection

• Monitor transactions and their dependencies on each
other through a wait-for graph

• Deadlock exists iff the wait-for graph has a cycle — all
transactions in the cycle are considered deadlocked

• Detection procedure consists of:

Building and maintaining the current wait-for graph as
transactions come in (i.e., create edges as locks are
requested on already-locked items)

Periodically run the cycle detection algorithm

Deadlock Recovery

When a deadlock is discovered, recovery must take
place — generally a rollback of one of the transactions:

• Choose the “victim” — involves a cost function for all
transactions in the deadlock; kill the lowest cost Ti

• Perform the rollback — choose between total rollback
(kill the entire transaction) or partial rollback (rollback
only to the point of deadlock; requires additional
system information)

• Watch for starvation — if a transaction repeats as the
victim, make sure it doesn’t repeat indefinitely

Concurrency Control
Odds & Ends

Other topics tackled in the text:

• Special handling for insert(Q) and delete(Q) operations
(special kind of write(Q) because they add or remove
data instead of change something that exists)

• Phantom phenomenon — transactions that conflict not
on a specific tuple, but over the tuples returned by a
query (e.g., a sum() and an insert that affects the sum)

• Weaker consistency — allowing less consistency in the
interest of better concurrency

PostgreSQL Specifics

• So now that you know all of these terms, how do they
apply to a real-world system like PostgreSQL?

• As of PostgreSQL 8.1, concurrency control settings,
behaviors, and features are:

MVCC by default

Almost-SQL-standard weakened consistency:
serializable and read committed are supported

Explicit shared and exclusive locks, at multiple
granularity levels

