
Concurrency Control

• The main challenge with concurrency and transactions 
is to preserve isolation — each transaction operates as 
if it were the only one running on a database

• We’ve seen how isolation can be preserved through 
serializability — scheduling the operations in a 
transaction so that the schedule is equivalent to one 
where the transactions are executed in sequence

• The concepts here assume that transactions are 
relatively brief; advanced approaches dealing with long-
duration transactions are beyond this scope

Locks

• Locks are a time-honored mechanism for enforcing 
mutual exclusion — that is, allowing at most one 
transaction to access a data item at any given moment

• The mutual exclusion results in the desired isolation

• Two main lock modes:

Shared-mode lock: a transaction can read, but not 
write, some data item Q (denoted by S)

Exclusive-mode lock: a transaction can both read and 
write item Q (denoted by X)



Basic Lock Sequence

At its most basic level, the locking sequence follows 
these steps for some transaction T:

1. Transaction T requests a lock for data item Q 
(written as lock-S(Q) for shared locks and lock-X(Q) 
for exclusive locks)

2. Concurrency-control manager grants the lock 
request if the requested lock is compatible with 
currently active locks; otherwise T has to wait

3. When lock is granted, T proceeds, calling unlock(Q) 
when it no longer needs the lock

Lock Compatibility

• Very straightforward — only shared locks on a specific 
data item Q are compatible, as seen below

• The upshot: we can have any number of shared locks 
on Q, but once an exclusive lock is requested, all 
shared locks have to be released first, then no other 
locks can be granted until the exclusive lock is released

comp S X

S true false

X false false



Locking Issues

• Unlocking Q right after a transaction Ti is done with it 
risks inconsistency — other transactions Tj may see an 
inconsistent big picture before Ti is totally done

• On the other hand, if Ti locks Q for too long, it will 
force another transaction Tj to wait for unlock(Q) — 
but if Tj currently locks another item R that Ti needs 
later, then Ti is forced to wait too, resulting in deadlock

• Finally, a transaction may be starved if it needs an 
exclusive lock on Q but new transactions keep getting 
a shared lock on Q

Locking Protocols

• We prefer deadlock over inconsistency: we can roll 
back upon deadlock, but inconsistency leads to errors

• Starvation isn’t too hard to avoid — just give priority 
to older lock requests before granting new ones

• Locking protocols state how locks are managed

• Given a locking protocol L: Ti precedes Tj if Tj needs a 
lock for which Ti already holds an incompatible lock; a 
schedule S is legal under L if you can derive S by 
following L; finally, L ensures conflict serializability iff all 
legal schedules under L are conflict serializable



Two-Phase Locking

• Two-phase locking is a locking protocol that ensures 
serializability (as defined previously)

• The phases involved for a transaction T are:

Growing phase — T may obtain locks, but not release

Shrinking phase — T may release locks, but not obtain

• Following these two phases results in a lock point — 
the point in a transaction where it obtains its final lock

• Two-phase locking ensures serializability but does not 
completely avoid deadlock

Two-Phase Locking Variations

• Strict two-phase locking: exclusive locks must be held 
until after a transaction commits — this additional rule 
avoids cascading rollback

• Rigorous two-phase locking: instead of just exclusive 
locks, all locks must be held until after commit

• Lock conversions: without them, many transaction 
precedences result in serial schedules — we allow 
upgrades from shared to exclusive mode during the 
growing phase, then allow downgrades from exclusive 
to shared during the shrinking phase



Typical Locking Rules

• As you may have noticed, we haven’t been using 
explicit lock requests in our SQL — the system 
determines this for us, based on the SQL involved

• Here’s a typical algorithm:

A read(Q) becomes lock-S(Q); read(Q);

A write(Q) becomes if (hasShared(Q)) then upgrade(Q); 
write(Q) else lock-X(Q); write(Q);

Unlock everything only after the transaction either 
commits or aborts

Locking Odds & Ends

• The text includes a blurb on implementing a lock 
manager — useful to know, but only absolutely 
necessary if you’re implementing a DBMS

• Two-phase locking is necessary and sufficient for 
ensuring serializability, and it doesn’t require any 
additional information about a transaction

• However, if additional information is available, other 
protocols are possible — the text talks about graph-
based locking protocols if you know the order in which 
transactions access data items



Timestamp-Based Protocols

• Another approach to concurrency control — execute 
transactions according to when they arrive at the 
server, vs. when conflicting locks are first acquired

• Assign a timestamp to each incoming transaction Ti 
(written as TS(Ti)), either via the system clock or a 
logical counter

• Assign two timestamps to each data item Q in the 
database: W-timestamp(Q) is the most recent successful 
write(Q), and R-timestamp(Q) is the most recent 
successful read(Q)

• Use the following protocol:
if Ti requests read(Q) {

if TS(Ti) < W-timestamp(Q) {
rollback;

} else {
read(Q);
R-timestamp(Q) = max(R-timestamp(Q), TS(Ti));

}
}

if Ti requests write(Q) {
if (TS(Ti) < R-timestamp(Q)) || (TS(Ti) < W-timestamp(Q)) {

rollback;
} else {

write(Q);
W-timestamp(Q) = TS(Ti);

}
}

• Restarted transactions get a new timestamp

• Ensures conflict serialziability, avoids deadlock because 
waiting is not involved, does not avoid starvation if a 
long transaction keeps getting rolled back, requires 
some tweaks for recoverability and cascadelessness



• Perform all writes at the end of a transaction, and do 
not allow transactions to read the data while they are 
being written

• Integrate limited locking: block transactions with 
incompatible or conflicting reads until the writing 
transaction commits successfully

• Track uncommitted writes: if a transaction read a data 
item that is written by other transactions before it, do 
not commit that transaction until the writing 
transactions have committed (recoverability only)

Recoverable and Cascadeless 
Timestamp Protocol Tweaks

• Observation: if TS(Ti) < TS(Tj), and Ti writes Q before 
TS(Tj), then we can just ignore that write, since it will 
be overwritten by Tj anyway

• Thomas’ write rule is a protocol tweak on the write(Q) 
case based on that observation:
...

if TS(Ti) < W-timestamp(Q) {
ignore write(Q);

}
...

• Note how this is based on view serializability instead 
of conflict serializability

Thomas’ Write Rule



Validation-Based Protocols

• Split transactions into three phases: read, validation, and 
write — where validation is a check to see if a 
transaction’s writes won’t trample over others

• Each phase gets a timestamp, and TS(T) is now the 
validation timestamp instead of its “arrival” timestamp; 
apply timestamp protocol with validation timestamp

• Considered to be optimistic instead of pessimistic — 
other protocols force a wait or rollback in any 
conflict, but this assumes that everything will be OK 
until validation time

Multiple-Granularity Locking

• Implementation/performance issue: allow multiple 
layers or scopes for different types of transactions

• Locks of different sizes: rows, tables, entire database

• A granularity hierarchy represents the different lock 
levels; a direct lock is explicit, while nodes underneath 
the explicit lock are implicitly locked

• Add an intention lock mode that locks nodes above an 
item that is explicitly locked

• The multiple-granularity locking protocol create a new 
compatibility function that inclodes intention locks



Multiversion Concurrency 
Control (MVCC)

• Maintain multiple versions of a database — each new 
write(Q) creates a new version of the data without 
immediately discarding the prior version

• Associate timestamps with versions: for version k of 
data item Q, W-timestamp(Qk) corresponds to when 
version k was created, and R-timestamp(Qk) is the 
timestamp of the last successful transaction to read Qk

• Associate each transaction with the most recent Qk 
that precedes it; all reads come from Qk, and a write(Q) 
will only rollback if TS(T) < R-timestamp(Qk)

• All versions older than the oldest transaction in the 
system except the most recent one can be discarded

• Reads will never fail in MVCC — matches well with the 
tendency of most databases to perform reads way 
more often than performing writes

• As is, does not ensure recoverability and 
cascadelessness; tweaks similar to those for timestamp 
protocols are required

• Multiversion two-phase locking tries to combine MVCC 
with two-phase locking: first, separate transactions to 
read-only and update categories; then, perform standard 
MVCC for read-only transactions and rigorous two-
phase locking for update transactions, with update 
transactions updating a version counter



• Through all this, we retained the open issue of 
deadlocks — note how we have said that deadlocks 
cannot be absolutely avoided in locking protocols

• Two primary approaches:

Deadlock prevention — try to avoid deadlock state in 
the first place

Deadlock detection and recovery — allow deadlocks, but 
catch and recover from them

• Issues include performance, overhead, rollback effects

Deadlock Handling

Deadlock Prevention

• Different approaches, without a clear winner due to 
assorted tradeoffs:

• Lock all data items at one time — suboptimal if actual 
use of locked data items is sparse

• Lock items according to a specified data item order — 
prevents the locking “loops” that result in deadlock, 
but requires a sequencing scheme for data items

• Preemption and rollback: rollback transactions holding 
locks according to certain rules (wait-die, wound-wait)



Deadlock Detection

• Monitor transactions and their dependencies on each 
other through a wait-for graph

• Deadlock exists iff the wait-for graph has a cycle — all 
transactions in the cycle are considered deadlocked

• Detection procedure consists of:

Building and maintaining the current wait-for graph as 
transactions come in (i.e., create edges as locks are 
requested on already-locked items)

Periodically run the cycle detection algorithm

Deadlock Recovery

When a deadlock is discovered, recovery must take 
place — generally a rollback of one of the transactions:

• Choose the “victim” — involves a cost function for all 
transactions in the deadlock; kill the lowest cost Ti

• Perform the rollback — choose between total rollback 
(kill the entire transaction) or partial rollback (rollback 
only to the point of deadlock; requires additional 
system information)

• Watch for starvation — if a transaction repeats as the 
victim, make sure it doesn’t repeat indefinitely



Concurrency Control
Odds & Ends

Other topics tackled in the text:

• Special handling for insert(Q) and delete(Q) operations 
(special kind of write(Q) because they add or remove 
data instead of change something that exists)

• Phantom phenomenon — transactions that conflict not 
on a specific tuple, but over the tuples returned by a 
query (e.g., a sum() and an insert that affects the sum)

• Weaker consistency — allowing less consistency in the 
interest of better concurrency

PostgreSQL Specifics

• So now that you know all of these terms, how do they 
apply to a real-world system like PostgreSQL?

• As of PostgreSQL 8.1, concurrency control settings, 
behaviors, and features are:

MVCC by default

Almost-SQL-standard weakened consistency: 
serializable and read committed are supported

Explicit shared and exclusive locks, at multiple 
granularity levels


