
SUPPO
RTS

SUPPORTS
SUPPORTS

SUPPORTS

SUPPORTS

SUPPORTS

SUPPORTS

SUPPORTS

EXTENDED_BY

INCLUDES

PROVIDES

CONNECTS_WITH

PLUG_INTO

PLUG_INTO

HAS

HAS
HAS

Java

Javascript

Python

.Net
PHP

Open
Source

Drivers

Neo4j

Integrations

Neo4j
Browser

Ruby

Go

And More

Cypher
Visualization

Dev Tools

Tools

Frameworks

Neo4j Setup Day!



Set up Neo4j on your local or EC2 machine

A. Install the software

B. Set up a configuration/data/logs directory tree

C. Edit the neo4j.conf file

D. Start neo4j, the Neo4j server

E. Interact with it using the Neo4j Browser



A. Install Neo4j Server

• The website makes Neo4j Desktop the most prominent 
download but we prefer to work with the server directly, 
so what we want for the class is Neo4j Server:


https://neo4j.com/download-center/#community


(Neo4j Desktop or their sandbox option works well for learning/experimentation, 
so you aren’t disallowed from downloading or using these—it’s just that running 

the server is the exposure that the course hopes to provide)


• Many package managers also have this available (e.g., 
apt, brew) so that option may apply to you

https://neo4j.com/download-center/#community


• Installing an an AWS EC2 host is nearly the same 
process—just all done remotely, and you would also 
need to open up certain ports for access from outside 
(specifically, ports 7474, 7473, and 7687—and 
possibly port 22 for ssh if not open already) 


• Specific Neo4j-on-AWS tips are given here:


https://neo4j.com/docs/operations-manual/current/cloud-
deployments/neo4j-aws/


• These tips make use on the following template:


https://aws.amazon.com/marketplace/pp/prodview-
akmzjikgawgn4

https://neo4j.com/docs/operations-manual/current/cloud-deployments/neo4j-aws/
https://neo4j.com/docs/operations-manual/current/cloud-deployments/neo4j-aws/
https://aws.amazon.com/marketplace/pp/prodview-akmzjikgawgn4
https://aws.amazon.com/marketplace/pp/prodview-akmzjikgawgn4


B. Create…

• Neo4j typically installs with defaults all ready to go, 
but they tend to be meant for system-level use (you can 
see these defaults by running neo4j console)


• In-keeping with our theme of being more aware of 
where things are, we’ll forego these defaults—it takes 
some extra work but it’s worth having the extra control


• Learning how to do this will make it easier to wipe 
things out and just start over, if needed (in addition to 
knowing clearly where Neo4j is reading/writing things)



1. Decide where you want Neo4j’s files to live and create 
a directory/folder at this location


2. Inside that directory/folder, create more folders: conf, 
data, logs, run


3. There should be a file called neo4j.conf somewhere in 
your installation—find it and copy it into conf


4. After these steps, your structure should look like this:


(designated Neo4j folder)

conf


neo4j.conf

data

logs

run



C. …and Configure

1. Open your copy of neo4j.conf and edit these settings—
put these at a bottom so that they override earlier 
values, if any:


dbms.directories.data=<absolute path to data>

dbms.directories.logs=<absolute path to logs>

dbms.directories.run=<absolute path to run>


2. Note that these settings must be absolute paths: start 
with “/” on macOS and Linux; start with the drive 
letter on Windows



3. The data, log, and run directories will be initialized by 
Neo4j as needed, so they can start out empty—if you 
want to completely start over, you can empty out their 
contents as well


4. Being comfortable with creating these directories and 
editing neo4j.conf comes in handy when using the 
high-performance import tool (more on that in the case 
study)—one of this utility’s requirements is that it 
must run on a previously unused database (exact words 
from the documentation!)…in other words, a new one


5. Knowing how to do this also allows you to create 
multiple storage locations, each independent of the 
other, in case you want to experiment or explore



D. Run Neo4j, Run
• With a non-default configuration like this, neo4j will 

need to be told where to look when it runs—lo and 
behold, we tell it via environment variable:


NEO4J_CONF=<absolute path to conf> neo4j console


• Here, conf is the directory, not the neo4j.conf file


• Once more, remember to use an absolute path


• You should be good to go if the last message you see on 
the console is Started



• To see more detailed debug messages, run this in 
another window (this path can be relative):


tail -f <path to logs>/debug.log


• To stop the server, hit Control-C


• If you want to start over in terms of data but don’t need 
a whole new directory structure, you can just stop the 
Neo4j server and wipe out everything in the data folder


The next server start will re-initialize the database

…including the neo4j user’s password


• Bulk import is best done while the server is off—and 
remember again, it requires a new data folder



E. Neo4j Browser Time

• Neo4j comes with both text (cypher-shell) and visual 
(Neo4j Browser) clients out of the box—due to the 
nature of graph databases, the visual client generally 
works better unless your queries return humongous 
graphs (more on resource usage later)


• Hit up Neo4j Browser at http://localhost:7474


• For a brand-new, just-created database, the initial 
username and password are: neo4j/neo4j—you will be 
asked to change this upon first login

(yet another 
port number!)



• Once you’re in, Neo4j Browser has a command-line 
like feel: you enter your next command at the top, then 
run it by clicking the ▶ button on the right—the 
results are then displayed and you are prompted for 
your next command; rinse and repeat


• Like clients for other systems, you can issue a mix of 
Cypher queries (MATCH, CREATE, etc.) or system/utility 
commands—see the side menu for examples and help


• The Neo4j website’s “Getting Started with Cypher” 
provides a good introductory walkthrough:


https://neo4j.com/developer/cypher/intro-cypher/

https://neo4j.com/developer/cypher/intro-cypher/


If You Have Room…

• You will notice—especially with large amounts of data 
and graphs—that Neo4j is a bit…demanding with 
respect to computing resources


• By default, Neo4j starts at 512 megabytes of memory—
it can grow this dynamically but generally does better 
if you give it more than that from the get-go


• Neo4j is written in Java, so its memory management 
behavior and settings correspond to Java’s



• Appending the following settings to your neo4j.conf file 
to whatever amount your machine can afford may help 
with performance:

dbms.memory.heap.initial_size=<custom amount>

dbms.memory.heap.max_size=<custom amount>


• Ideally, set these to the same amount—whatever you 
can afford to spare above 512 megabytes


• The amounts should be formatted as numbers followed 
by units (i.e., m for megabytes, g for gigabytes, etc.):

dbms.memory.heap.initial_size=4g

dbms.memory.heap.max_size=4g


