
Data Storage

• As mentioned, computer science involves the study of 
algorithms and getting machines to perform them — 
before we dive into the algorithm part, let’s study the 
machines that we use today to do our bidding

• In the past, these machines were based on gears, punch 
cards, beads, or other mechanical artifact; from the 
vacuum tube onward, we’ve relied on electronic 
devices, and these devices have two main states: they’re 
either on or off

• On/off…current/no current…true/false…one/zero

1s and 0s

• At the lowest, physical level, computers only recognize 
two values: one or zero

• Everything you’ve experienced with today’s computers 
are ultimately expressed as patterns of 1s and 0s

• Having only two fundamental values means that we 
have a binary system

• Compare this with our decimal system, where an 
individual numeric symbol, or digit, can have 10 possible 
values (0 to 9)



• A single 1 or 0 is said to occupy a bit, short for binary 
digit (as opposed to the decimal digits that we use)

• 4 bits is sometimes called a “nybble;” 8 bits is a byte

• Physical phenomena — light, colors, force, movement, 
sounds (vibrations) — are analog or continuous, falling 
into an infinitely precise range of values or intensities; 
to represent them in a computer, they need to be 
digitized — expressed as sequences of distinct bits

Devices that place data into a computer (mice, scanners, microphones) can be viewed as 
analog-to-digital (A/D) converters; devices that send data from a computer (monitors, 
printers, amps) perform the reverse, converting digital (bits) to analog (light, sound waves)

Bits and PCs

From Binary to Boolean

• Another well known set of concepts is binary in 
nature: true vs. false (yet another synonym: dichotomy)

• Thus, the concept of 1 vs. 0 is interchangeable with 
the concept of true vs. false: 1 corresponds to true 
while 0 corresponds to false

• Mathematical logic has defined well-known operations 
for combining true and false values — these are called 
boolean operations, in honor of George Boole (1815–
1864), one of the subject’s pioneers



And, Or, Not, But Not But (!)

• Mathematical (a.k.a. boolean) logic gives exact 
definitions for what and, or, and not mean

• In fact we get an additional operation called xor 
(“exclusive or”) for which we don’t have a one-word 
English equivalent

• To see the “truth tables” for and, or, and xor, see 
Brookshear Figure 1.1

• There is no boolean operation for “but” — does the 
above title make sense now?

Gates and Flip-flops

• So now we have the conceptual framework: values 
(true/false, 1/0) and operations (and, or, xor, not)

• We’ve seen that boolean values “exist” in the real 
world via electronic signal or current

• Boolean operations also have real-world counterparts, 
in the form of gates and flip-flops — devices that take 
input signals, then produce an output signal

• The actual devices span a variety of technologies, so 
on paper they are represented with standard symbols 
— see the book for details



Hexadecimal Notation

• In the same way that our decimal system expresses 
numbers as a sequence of decimal digits (“0” to “9”) 
multiplied by powers of 10…

728 = 7(102) + 2(101) + 8(100)

• …we can also interpret streams of bits as sequences 
of values multiplied by powers of 2:

1001 = 1(23) + 0(22) + 0(21) + 1(20) = 9

• This can get pretty long — it takes 4 bits to express 
16 different values, where decimal needs only 2 digits

• Fortunately, our Hindu-Arabic system of notation 
enables easy translation from one base to another if 
the new base is an exact power of the old one

• With the binary system, we have powers of 2: 21 = 2, 
22!= 4, 23 = 8, 24 = 16, and so on

• Note how, if we “cluster” bits into subgroups, you can 
make their notation shorter without completely losing 
their underlying bit representation

• With computers, we use groups of 4 bits, thus 
expressing 16 distinct values per digit, as opposed to 2 
in binary or 10 in decimal — this is base 16, or the 
hexadecimal system, where the digits are “0” to “9” and 
we co-opt “A” to “F” to represent the values 10 to 15



With hexadecimal notation (or “hex” for short), 
conversion is easy (vs. converting from binary to decimal) 
— let’s look at the binary stream “1011011000”

• Conversion to decimal requires adding the powers of 
2 for which a bit is “1”: 29 + 27 + 26 + 24 + 23 = 728

• Conversion to hex requires that we cluster the bits 
into groups of 4, then just translate the groups:

1011011000 clusters into 0010 1101 1000

Each group of 4 becomes a digit: 2D8

The Joy of Hex

• So, does “10” stand for the decimal value 2, 10, or 16?  
Let us count the ways…

One notation standard is to use a subscript for the base; thus 102 is 2, 1010 is 10, 1016 is 
16, and so on

But one can’t really write subscripts in computer programs (as you’ll see), so alternative 
notations include prefixes (%10, 0x10) and suffixes (10h)

In general, the context of a number will tell you the base that is being used

• 2 hex digits (and thus 8 bits) form a byte

• Terms like “32-bit” or “64-bit” typically refer to how 
many bits a machine, processor, or device can handle in 
a single operation

• Most importantly — hex notation is primarily for human 
convenience: at the level of the machine, it’s still all bits

Sometimes, octal notation (3 clustered bits per cluster = base 8) is also used as shorthand



• As mentioned, all information on a computer — 
whether documents, images, sound, video — is 
ultimately represented as sequences or patterns of bits

• The circuitry that keeps track of these bits while you 
(and thus the computer) are actively working on them 
is called main memory

• Main memory can be thought of as an incredibly long 
sequence of bits — in practice, we group the bits 8 at 
a time, so we typically think of, measure, and count 
main memory in terms of bytes instead of bits

Main Memory

• Within a byte, we imagine the bits arranged from left 
to right; typically, the leftmost bit is viewed as the high-
order or most-significant bit, because if the byte were 
interpreted as a binary (base 2) number, then that bit is 
the one with the highest power, 27 or 128

• To indicate which byte in main memory we’re talking 
about, we count them off from the beginning; the 
number of required “steps” from the beginning in 
order to reach a particular byte is called its address

• You may have noticed that the book starts with 
Chapter Zero; this is a common convention in 
computer science — we think of the first item of most 
lists as the “zero-th” item instead of the “1st” one, 
because it is “zero steps from the first item”



• Physical memory devices consist of circuitry that can 
store these billions of bytes; the circuitry is set up so 
that the time it takes to get to any byte is independent 
of its address — thus, such memory is called random 
access memory or RAM

Contrast this with camcorder or VCR tapes, where it takes longer to get to the end than 
the beginning (assuming that the tape starts out being fully rewound)

• Some types of memory require an electronic charge 
the flow through the circuitry in order to maintain the 
bit patterns; when you turn off the power, the data 
goes away — this is volatile or dynamic RAM

Memory Terms and 
Measurements

• Memory that can retains its data without power is 
called non-volatile RAM (NVRAM) — examples include 
the RAM in some music players and cell phones

Sometimes the data is “burned” into the memory; you can’t change it because it is actually 
part of the circuitry — this is read-only memory or ROM

• Just as the metric system uses prefixes to cluster (or 
divide) units of measure (e.g., kilometers, milligrams), 
we also group bytes into larger units using the same 
prefixes: kilo-, mega-, giga-, tera-, peta-, exa-, zetta-, yotta-

But there’s a twist: instead of an exact power of 10 (e.g., 103 for kilo-), these prefixes have 
historically referred to the power of 2 that is nearest to that power of 10 — so kilobyte is 
actually 1024 (210) bytes, megabyte is really 1048576 (220) bytes, and so on

Needless to say, this can get very confusing, especially since other units of measure do use 
the exact power of 10 (e.g., 1 kilogram is 1000 grams, period)

To address this, there is a movement to change these prefixes back to exact powers of 10; 
however, for the “binary versions” of these prefixes, the last syllable is to be replaced with 
“bi” (for “binary,” natch) — kibi-, mebi-, gibi-, tebi-, pebi-, exbi-, zebi-, yobi-

Clearly though, this hasn’t gone mainstream yet, so stay tuned  :)



Mass Storage

• If main memory is where computers do much of their 
algorithmic work, then mass storage is where this work 
is “kept” for later use or even posterity

• Mass storage is ultimately just like main memory: it is 
intended to house sequences of bits

• But, unlike main memory, mass storage technology:

Is non-volatile (i.e., loss of power " loss of data)

Stores much more information

Costs much less per unit of data

But tends to be much slower

• Mass storage devices come in many technological 
flavors, each of which we encounter almost daily now:

Magnetic systems use magnetic media, such as coated disks or tape, to hold information; a 
head with a magnetic field and sensor uses the magnetic properties of the medium’s 
coating to store data

Optical systems use reflective properties instead of magnetism to read/write bits; their 
design tends to make them more suited for reading looooooong sequences of data such 
as music or video rather than random access of data anywhere on the medium

Flash memory, like main memory stores information completely electronically, without the 
need for moving parts; however, they cost more, and are not yet suitable for the dynamic, 
constant read/write activity seen by main memory

• Unlike computers, people don’t see information as 
strings of “physical” bits, but instead as “logical” units of 
information that make sense together

Examples include documents, images, applications, addresses, appointments, etc.

To bridge this gap, storage technology is typically “presented” as an abstraction (there’s that 
word again) such as a file system — instead of “bits at this location,” we get files, folders, and 
other ideas that correspond better to how we view information



From Bits to Text, Numbers, 
Images, Sounds, Etc.

• Speaking of abstractions…even within the level of an 
individual file, we still don’t see bits; instead, we see 
words, numbers, or color, and in some cases we don’t 
see data but hear it

• But we now know that all of these items are really all 
sequences of bits — how is it done?  Two key factors:

You need an encoding/decoding scheme that allows you 
to unambiguously translate bits back and forth

And you need standardization so that everyone agrees 
to use the same scheme

Representing Text

• Text (words, numbers, punctuation) can be broken up 
into “atomic” units called characters: ‘a’ ‘b’ ‘3’ ‘!’ etc.

Thus, representing text is largely a translation from a specific bit pattern to a character 
and back, say ‘A’ is 0000 0001, ‘!’ is 0000 0010, etc.

• As mentioned, this is useless unless everyone is using 
the same bit-to-character code, so early on, the ASCII 
standard was established, using 7 bits per character

• Eventually we needed more characters (accents, other 
languages, etc.), so now we have Unicode and related 
ISO standards that use 16 or more bits per character



Representing Numbers

• You might look at this and go “but wait — aren’t 
binary values already numbers, but just in base 2?”

• This would be partially correct: given n bits, you can 
express 2n distinct values, and these can stand in for 
the integers 0 to 2n – 1

• But there are some wrinkles to this scheme:
How do you express negative numbers?
How about fractions?
How about infinity?

• It turns out that addressing these issues results in 
significant differences in bit representation schemes

• For negative numbers, we need to use one bit as the 
sign bit, changing the representable range of values for n 
bits to [–2n – 1 … 2n – 1 – 1]

Even with a “sign bit,” the devil is in the details; such details result in schemes such as two’s 
complement and excess notation, but explained further in the textbook

• Fractions require a bit-level equivalent to the radix 
point, or the position past which we are representing a 
number whose value is between zero and one

Fixed point representation resembles our decimal notation the most, while floating point can 
handle a wider range of numbers at the cost of decreased precision

• As to infinity…well, the truth is that we can’t create 
bits out of thin air; we do get overflow, which occurs 
when calculations exceed our allocated bit space

But not to worry — first, when programmers know that their numbers need “special 
handling,” they can create ways to deal with that; second, with today’s 32-bit and 64-bit 
systems, we have enough room for all but the most demanding numeric tasks



• If you thought text and numbers were tricky, wait till 
you try turning more complicated media — images, 
audio, video — into bit patterns

Not surprisingly, the effective representation of these items in digital form came along 
much later than for text and numbers

• The full details are quite daunting, but the overall 
principle lies in quantifying the sensory elements (light, 
sound, time) of these types of information

For images, core values include position or location and color

For sound, we can measure the amplitude of a sound wave

Temporal or time-based media such as video and sound add a notion of frequency — or, 
how “quickly” do individual images or amplitude values have to be “displayed”

Representing Images, Audio, 
and Video

Other Twists: Compression 
and Error Correction

• Additional issues in data representation arise due to 
practical considerations, such as:

Storage and transmission speed aren’t infinite — what if the data involved is really large 
(particularly compelling for images, audio, and video)?

Technology isn’t perfect — how do we know that my data doesn’t get corrupted?

• To address these concerns, additional “layers” of bit 
representation are added to the methods that we’ve 
already covered

Data compression algorithms seek ways to use fewer bits to store the same information

Error correction codes use additional bits to “double-check” whether a bit pattern may be 
corrupt or inconsistent


