
Data Storage

• As mentioned, computer science involves the study of
algorithms and getting machines to perform them —
before we dive into the algorithm part, let’s study the
machines that we use today to do our bidding

• In the past, these machines were based on gears, punch
cards, beads, or other mechanical artifact; from the
vacuum tube onward, we’ve relied on electronic
devices, and these devices have two main states: they’re
either on or off

• On/off…current/no current…true/false…one/zero

1s and 0s

• At the lowest, physical level, computers only recognize
two values: one or zero

• Everything you’ve experienced with today’s computers
are ultimately expressed as patterns of 1s and 0s

• Having only two fundamental values means that we
have a binary system

• Compare this with our decimal system, where an
individual numeric symbol, or digit, can have 10 possible
values (0 to 9)

• A single 1 or 0 is said to occupy a bit, short for binary
digit (as opposed to the decimal digits that we use)

• 4 bits is sometimes called a “nybble;” 8 bits is a byte

• Physical phenomena — light, colors, force, movement,
sounds (vibrations) — are analog or continuous, falling
into an infinitely precise range of values or intensities;
to represent them in a computer, they need to be
digitized — expressed as sequences of distinct bits

Devices that place data into a computer (mice, scanners, microphones) can be viewed as
analog-to-digital (A/D) converters; devices that send data from a computer (monitors,
printers, amps) perform the reverse, converting digital (bits) to analog (light, sound waves)

Bits and PCs

From Binary to Boolean

• Another well known set of concepts is binary in
nature: true vs. false (yet another synonym: dichotomy)

• Thus, the concept of 1 vs. 0 is interchangeable with
the concept of true vs. false: 1 corresponds to true
while 0 corresponds to false

• Mathematical logic has defined well-known operations
for combining true and false values — these are called
boolean operations, in honor of George Boole (1815–
1864), one of the subject’s pioneers

And, Or, Not, But Not But (!)

• Mathematical (a.k.a. boolean) logic gives exact
definitions for what and, or, and not mean

• In fact we get an additional operation called xor
(“exclusive or”) for which we don’t have a one-word
English equivalent

• To see the “truth tables” for and, or, and xor, see
Brookshear Figure 1.1

• There is no boolean operation for “but” — does the
above title make sense now?

Gates and Flip-flops

• So now we have the conceptual framework: values
(true/false, 1/0) and operations (and, or, xor, not)

• We’ve seen that boolean values “exist” in the real
world via electronic signal or current

• Boolean operations also have real-world counterparts,
in the form of gates and flip-flops — devices that take
input signals, then produce an output signal

• The actual devices span a variety of technologies, so
on paper they are represented with standard symbols
— see the book for details

Hexadecimal Notation

• In the same way that our decimal system expresses
numbers as a sequence of decimal digits (“0” to “9”)
multiplied by powers of 10…

728 = 7(102) + 2(101) + 8(100)

• …we can also interpret streams of bits as sequences
of values multiplied by powers of 2:

1001 = 1(23) + 0(22) + 0(21) + 1(20) = 9

• This can get pretty long — it takes 4 bits to express
16 different values, where decimal needs only 2 digits

• Fortunately, our Hindu-Arabic system of notation
enables easy translation from one base to another if
the new base is an exact power of the old one

• With the binary system, we have powers of 2: 21 = 2,
22!= 4, 23 = 8, 24 = 16, and so on

• Note how, if we “cluster” bits into subgroups, you can
make their notation shorter without completely losing
their underlying bit representation

• With computers, we use groups of 4 bits, thus
expressing 16 distinct values per digit, as opposed to 2
in binary or 10 in decimal — this is base 16, or the
hexadecimal system, where the digits are “0” to “9” and
we co-opt “A” to “F” to represent the values 10 to 15

With hexadecimal notation (or “hex” for short),
conversion is easy (vs. converting from binary to decimal)
— let’s look at the binary stream “1011011000”

• Conversion to decimal requires adding the powers of
2 for which a bit is “1”: 29 + 27 + 26 + 24 + 23 = 728

• Conversion to hex requires that we cluster the bits
into groups of 4, then just translate the groups:

1011011000 clusters into 0010 1101 1000

Each group of 4 becomes a digit: 2D8

The Joy of Hex

• So, does “10” stand for the decimal value 2, 10, or 16?
Let us count the ways…

One notation standard is to use a subscript for the base; thus 102 is 2, 1010 is 10, 1016 is
16, and so on

But one can’t really write subscripts in computer programs (as you’ll see), so alternative
notations include prefixes (%10, 0x10) and suffixes (10h)

In general, the context of a number will tell you the base that is being used

• 2 hex digits (and thus 8 bits) form a byte

• Terms like “32-bit” or “64-bit” typically refer to how
many bits a machine, processor, or device can handle in
a single operation

• Most importantly — hex notation is primarily for human
convenience: at the level of the machine, it’s still all bits

Sometimes, octal notation (3 clustered bits per cluster = base 8) is also used as shorthand

• As mentioned, all information on a computer —
whether documents, images, sound, video — is
ultimately represented as sequences or patterns of bits

• The circuitry that keeps track of these bits while you
(and thus the computer) are actively working on them
is called main memory

• Main memory can be thought of as an incredibly long
sequence of bits — in practice, we group the bits 8 at
a time, so we typically think of, measure, and count
main memory in terms of bytes instead of bits

Main Memory

• Within a byte, we imagine the bits arranged from left
to right; typically, the leftmost bit is viewed as the high-
order or most-significant bit, because if the byte were
interpreted as a binary (base 2) number, then that bit is
the one with the highest power, 27 or 128

• To indicate which byte in main memory we’re talking
about, we count them off from the beginning; the
number of required “steps” from the beginning in
order to reach a particular byte is called its address

• You may have noticed that the book starts with
Chapter Zero; this is a common convention in
computer science — we think of the first item of most
lists as the “zero-th” item instead of the “1st” one,
because it is “zero steps from the first item”

• Physical memory devices consist of circuitry that can
store these billions of bytes; the circuitry is set up so
that the time it takes to get to any byte is independent
of its address — thus, such memory is called random
access memory or RAM

Contrast this with camcorder or VCR tapes, where it takes longer to get to the end than
the beginning (assuming that the tape starts out being fully rewound)

• Some types of memory require an electronic charge
the flow through the circuitry in order to maintain the
bit patterns; when you turn off the power, the data
goes away — this is volatile or dynamic RAM

Memory Terms and
Measurements

• Memory that can retains its data without power is
called non-volatile RAM (NVRAM) — examples include
the RAM in some music players and cell phones

Sometimes the data is “burned” into the memory; you can’t change it because it is actually
part of the circuitry — this is read-only memory or ROM

• Just as the metric system uses prefixes to cluster (or
divide) units of measure (e.g., kilometers, milligrams),
we also group bytes into larger units using the same
prefixes: kilo-, mega-, giga-, tera-, peta-, exa-, zetta-, yotta-

But there’s a twist: instead of an exact power of 10 (e.g., 103 for kilo-), these prefixes have
historically referred to the power of 2 that is nearest to that power of 10 — so kilobyte is
actually 1024 (210) bytes, megabyte is really 1048576 (220) bytes, and so on

Needless to say, this can get very confusing, especially since other units of measure do use
the exact power of 10 (e.g., 1 kilogram is 1000 grams, period)

To address this, there is a movement to change these prefixes back to exact powers of 10;
however, for the “binary versions” of these prefixes, the last syllable is to be replaced with
“bi” (for “binary,” natch) — kibi-, mebi-, gibi-, tebi-, pebi-, exbi-, zebi-, yobi-

Clearly though, this hasn’t gone mainstream yet, so stay tuned :)

Mass Storage

• If main memory is where computers do much of their
algorithmic work, then mass storage is where this work
is “kept” for later use or even posterity

• Mass storage is ultimately just like main memory: it is
intended to house sequences of bits

• But, unlike main memory, mass storage technology:

Is non-volatile (i.e., loss of power " loss of data)

Stores much more information

Costs much less per unit of data

But tends to be much slower

• Mass storage devices come in many technological
flavors, each of which we encounter almost daily now:

Magnetic systems use magnetic media, such as coated disks or tape, to hold information; a
head with a magnetic field and sensor uses the magnetic properties of the medium’s
coating to store data

Optical systems use reflective properties instead of magnetism to read/write bits; their
design tends to make them more suited for reading looooooong sequences of data such
as music or video rather than random access of data anywhere on the medium

Flash memory, like main memory stores information completely electronically, without the
need for moving parts; however, they cost more, and are not yet suitable for the dynamic,
constant read/write activity seen by main memory

• Unlike computers, people don’t see information as
strings of “physical” bits, but instead as “logical” units of
information that make sense together

Examples include documents, images, applications, addresses, appointments, etc.

To bridge this gap, storage technology is typically “presented” as an abstraction (there’s that
word again) such as a file system — instead of “bits at this location,” we get files, folders, and
other ideas that correspond better to how we view information

From Bits to Text, Numbers,
Images, Sounds, Etc.

• Speaking of abstractions…even within the level of an
individual file, we still don’t see bits; instead, we see
words, numbers, or color, and in some cases we don’t
see data but hear it

• But we now know that all of these items are really all
sequences of bits — how is it done? Two key factors:

You need an encoding/decoding scheme that allows you
to unambiguously translate bits back and forth

And you need standardization so that everyone agrees
to use the same scheme

Representing Text

• Text (words, numbers, punctuation) can be broken up
into “atomic” units called characters: ‘a’ ‘b’ ‘3’ ‘!’ etc.

Thus, representing text is largely a translation from a specific bit pattern to a character
and back, say ‘A’ is 0000 0001, ‘!’ is 0000 0010, etc.

• As mentioned, this is useless unless everyone is using
the same bit-to-character code, so early on, the ASCII
standard was established, using 7 bits per character

• Eventually we needed more characters (accents, other
languages, etc.), so now we have Unicode and related
ISO standards that use 16 or more bits per character

Representing Numbers

• You might look at this and go “but wait — aren’t
binary values already numbers, but just in base 2?”

• This would be partially correct: given n bits, you can
express 2n distinct values, and these can stand in for
the integers 0 to 2n – 1

• But there are some wrinkles to this scheme:
How do you express negative numbers?
How about fractions?
How about infinity?

• It turns out that addressing these issues results in
significant differences in bit representation schemes

• For negative numbers, we need to use one bit as the
sign bit, changing the representable range of values for n
bits to [–2n – 1 … 2n – 1 – 1]

Even with a “sign bit,” the devil is in the details; such details result in schemes such as two’s
complement and excess notation, but explained further in the textbook

• Fractions require a bit-level equivalent to the radix
point, or the position past which we are representing a
number whose value is between zero and one

Fixed point representation resembles our decimal notation the most, while floating point can
handle a wider range of numbers at the cost of decreased precision

• As to infinity…well, the truth is that we can’t create
bits out of thin air; we do get overflow, which occurs
when calculations exceed our allocated bit space

But not to worry — first, when programmers know that their numbers need “special
handling,” they can create ways to deal with that; second, with today’s 32-bit and 64-bit
systems, we have enough room for all but the most demanding numeric tasks

• If you thought text and numbers were tricky, wait till
you try turning more complicated media — images,
audio, video — into bit patterns

Not surprisingly, the effective representation of these items in digital form came along
much later than for text and numbers

• The full details are quite daunting, but the overall
principle lies in quantifying the sensory elements (light,
sound, time) of these types of information

For images, core values include position or location and color

For sound, we can measure the amplitude of a sound wave

Temporal or time-based media such as video and sound add a notion of frequency — or,
how “quickly” do individual images or amplitude values have to be “displayed”

Representing Images, Audio,
and Video

Other Twists: Compression
and Error Correction

• Additional issues in data representation arise due to
practical considerations, such as:

Storage and transmission speed aren’t infinite — what if the data involved is really large
(particularly compelling for images, audio, and video)?

Technology isn’t perfect — how do we know that my data doesn’t get corrupted?

• To address these concerns, additional “layers” of bit
representation are added to the methods that we’ve
already covered

Data compression algorithms seek ways to use fewer bits to store the same information

Error correction codes use additional bits to “double-check” whether a bit pattern may be
corrupt or inconsistent

