
JavaScript Basics

• At this point, you should have reached a certain
comfort level with typing and running JavaScript code
— assuming, of course, that someone has already
written it for you

• This handout aims to summarize some basic building
blocks that will get you on the road to writing some of
your own JavaScript programs

• If you’re interested more details, either consult me, the
recommended textbook, or the web — whatever you
feel will work best for you :)

The Big Picture

• JavaScript (and many other programming languages) have
the following basic building blocks (there are more, of
course — but this is what we have for now):

Expressions!!!!!!!!!!Variables!!!!!!!!!!Statements

• Of these building blocks, the statement is the construct
that plays the closest role to a plain English instruction
— a JavaScript program is essentially a sequence of
statements, each of which may involve one or more
expressions or variables to get its work done

Expressions

• Expressions are the fundamental “things” or “nouns” in
JavaScript — they are pieces of code that are evaluated
to determine the “thing” that this code represents

• Examples of such expressions (and their corresponding
“things” or computed values) include:

2 the number 2

"hello world" the phrase “hello world”

(2 + 8.1) * 5 the number 50.5

9 > 4 something that is true

"dog" + "house" the word “doghouse”

"bad" === "good" something that is false

• Expressions consist of values and operators

• Every value in JavaScript is either a Boolean (true or
false), a number, a string (i.e., a piece of text, including
letters, numbers, punctuation, or other symbols), a
special value called undefined, a special value called null,
or an object

• Of these, Booleans, numbers, and strings are easiest
values to understand, because we probably already use
them a lot in daily life

• Operators represent actions that combine or manipulate
values to produce a new value — for example,
multiplication operator (represented by * in JavaScript)
combines two numbers and to compute their product

There are ultimately only two Boolean values: true and
false (sorry, no “maybe”s here) — Booleans are most
useful not in these forms (though JavaScript does
understand them), but as the results of operators:

Boolean Values

Operator Meaning Sample Expression Value

=== equal to 7 === 5 false

!== not equal to "dog" !== "cat" true

< less than 10 < 100 true

> greater than 10 > 100 false

<= less than or equal to 5 <= 0 false

>= greater than or equal to 12 >= 12 true

• There are also operators that combine or manipulate
Boolean expressions themselves: && (“and”), || (“or”),

^!(“exclusive or”), and ! (“not”)

• Combined with the examples above, you can get
expressions like: !(7 === 5) (false), (10 < 100) || (5 <= 0)
(true), ("dog" !== "cat") && ("cat" !== "mouse") (true)

• Note the use of parentheses to “group” parts of the
expression together

x y x && y x || y x ^ y !x
true true true true false false

true false false true true false

false true false true true true

false false false false false true

N.B. Some sources use == for “equals” and != for “not equals” — we prefer === and !==

because these provide “stricter” interpretations of equality and inequality.

• Number expressions very closely resemble familiar,
handwritten arithmetic, with a few wrinkles:

Huge numbers can be written using “scientific
notation,” roughly interpreted as “the number before E
(or e) times 10 raised to the number after E (or e)” —
3.6288e6 is 3,628,800; 5.390E–44 is 5.390 " 10–44

The operators + (addition) and – (subtraction) are

what you’d expect; there is also * (multiplication), /

(division), and % (modulo, or remainder: 18 % 5 === 3)

Numbers

• Other operators are available — note “Math. …” as a

common prefix: Math.floor(2.8) is 2; Math.sqrt(16) is

4; Math.pow(2.5, 4) is 39.0625

• As in most programming languages, there is such a thing
as a largest and smallest value that JavaScript can handle
— any values beyond them yield the special values
Infinity and –Infinity

• Another special value is NaN (“not a number”), which

JavaScript computes when you give it an expression
that, uh, is not a number (e.g., 0/0, "dog" – "cat",

Infinity – Infinity, NaN + 42, etc.)

• Precision, or “how exact” a numerical expression is, also
has limits: try the one-liner alert(0.1 + 0.2);

• Values that we typically think of as text, words, or
phrases fall under the technical term string — symbols
(or characters) that are strung together

• The notion of a “symbol” here is actually quite broad: it
adheres to a standard called Unicode and encompasses
way more than the alphabet, numbers, and punctuation

• String values are written within double quotes (e.g.,
"string") or single quotes (e.g., 'string'), all on one line

• Special symbols are preceded by a backslash (\) — ask

me if you’re curious about these

Strings

• There are dozens of string operations…to name a few:

• When a user provides information using prompt, the

resulting values are always strings — you need special
operations such as parseInt and parseFloat to turn

them into numbers (i.e., "2" is not the same as 2)

• The + operator is “overloaded” — with numbers, it

does addition, while with one or more strings, it
connects strings together (concatenation)

Operator Sample Expression Value

length "Hello, human".length 12

indexOf "Where".indexOf("here") 1

toLowerCase "Shrink ME!".toLowerCase() "shrink me!"

toUpperCase "Rise, Vader".toUpperCase() "RISE, VADER"

replace "boo".replace("oo", "ird") "bird"

charAt "You're my BFF".charAt(3) "'"

number

string

Variables

• Sometimes you want to store or save the value of an
expression for later use or manipulation

• This storage mechanism is called a variable — it holds a
value, and has a name (so you can refer to it)

• To “create” a variable, you declare it: var answer;

• To give it a value, you assign an expression to it anytime
after it has been declared: answer = 21 * 2;

• You may declare and assign a variable in a single bound:
var answer = 42;

• The best part about variables is that you can use them in
expressions — note the following program:
var x = 2; // Declares x, initializing it to 2.

alert(x); // Alerts 2.

alert(10 * x); // Alerts 20.

var y; // Declares y without an explicit initial value.

alert(y); // Alerts undefined.

y = x * 5; // Assigns 10 to y, because x is still 2.

var z = y; // Declares z, initializes it to 10.

y = "dog"; // Assigns "dog" to y, overwriting the old value 10.

alert(y + z); // Alerts "dog10", because z is still 10.

• As an aside, observe that, although the program seems to
not do anything useful, it actually does: it shows you how
to use variables in expressions…you can say that
usefulness is in the eye of the beholder :)

• Using a [non-existent] variable before declaring it results
in an error (browsers vary on how this is reported)

N.B. JavaScript does allow assignment without declaration (e.g., title = "Twilight";), but

this is considered to be a language flaw. So, always use var when declaring variables.

• We take a moment to mention a special kind of value in
JavaScript (and other programming languages): an array

• Arrays are sequences of values: if a is a variable to which

an array has been assigned, a[0] represents its first

value, a[1] represents its second value, and so on

• Arrays are written in between square brackets ([]),

with individual values separated by commas (,):

var fib = [0, 1, 1, 2, 3, 5, 8];

var words = ["how", "now", "brown", "cow"];

var arrays = [0, 1, ["array", "in", "an", "array"], 5, "wow"];

Arrays

• For an array a, the expression a.length yields the

number of elements in a

• Add values to an array using push (to add to the end) or

unshift (to add to the beginning)

• Remove values from an array using pop (to remove from

the end) or shift (to remove from the beginning)

• You can even sort an array — but, by default, this treats

all values like strings, so that 10 will be placed before 2

var a = []; // a is an array of length 0.

var b = [3, 5]; // b has length 2.

b.push(2); // Now b is [3, 5, 2].

b.unshift(7); // Now b is [7, 3, 5, 2].

a.push(3, 10, 5); // Now a is [3, 10, 5].

alert(a.pop()); // Alerts 5 and changes a to [3, 10].

alert(a.shift()); // Alerts 3 and changes a to [10].

b.push(a[0], 1); // b is now [7, 3, 5, 2, 10, 1].

b.sort(); // b is now [1, 10, 2, 3, 5, 7].

Statements

• We come full circle with statements — as mentioned, a
JavaScript program is essentially a sequence of statements

• Statements are executed when the program is run

• We have mentioned before that semicolons (;) end

statements; the full rule is that that every statement
ends with a semicolon unless it already ends with a
right curly brace (})

• Declaration and assignment are simple types of
statements (note how they ended with semicolons)

• Conditional statements do different actions depending on
some condition: they consist of an if part, zero or more

else if parts, and an optional else part

• The if and else if parts include a Boolean expression,

enclosed between parentheses (()) — the truth of this

expression determines what actions are taken

• All parts provide a sequence of statements enclosed
between curly braces ({ }) and indented for readability:

if (score >= 90) { // The score variable may have either been

 grade = "A"; // assigned to directly, or provided by the

} else if (score >= 80) { // user in response to a prompt instruction.

 grade = "B";

} else if (score >= 70) { // The grade variable is assumed to have been

 grade = "C"; // declared prior to reaching this code.

} else {

 grade = "F";

}

alert("The letter grade for " + score + " is " + grade + ".");

• Loop statements execute a set of statements over and
over again — this activity, called iteration, is a key
concept in many programming languages

• The while statement performs statements repeatedly as
long as a given condition evaluates to true — it starts
with the keyword while, followed by the condition in

parentheses, followed by the statements to repeat,
indented and between curly braces

• The for statement also loops as long as a condition is
true, but allows for some code to run at certain times

Loops

• The program below keeps asking for a guess until the
user gets it right:

// Get a random number between 0 and 25, inclusive.

var index = Math.floor(Math.random() * 26);

// Get a random letter.

var letter = "ABCDEFGHIJKLMNOPQRSTUVWXYZ".charAt(index);

var numberOfTries = 1;

while (prompt("Enter a guess for my letter:") !== letter) {

 numberOfTries = numberOfTries + 1;

}

alert("You guessed it in " + numberOfTries + " tries.");

• This one gathers up the first letter of each word in the
words array:

// Alerts a string made up of the initial characters of each array item.

var words = ["Rats", "are", "very", "intellegent"]; // Get it? :)

var result = "";

for (var i = 0; i < words.length; i++) {

 result = result + words[i].charAt(0);

}

alert(result);

• Expressions, variables, and statements are building blocks
— their power truly emerges when used [correctly] in
combination with each other

• You’ve already seen how expressions can take a string
and produce a number (length), or take numbers to

produce a Boolean value (===, !==, <, >, etc.)

• A simple form of recursion exists as well: expressions
can contain more expressions (typically nested in
parentheses ()), and statements can contain more

statements (loops inside conditionals or vice versa)

Mix and Match

Overall Structure

At this early stage, you might want to give your programs
the following superstructure:

• Specification of input, whether by prompt (with

appropriate conversion if necessary) or direct variable
declaration and assignment

• The instructions for the algorithm, leading to its answer
stored in a variable

• Display of the variable within an appropriate message,
typically using alert — or, later on, using the web page

