
The Java Event Model

• Note how all of the code we have written so far has
been 100% setup — it executes before our panels even
appear in front of our users

• What happens when the users see it and start
interacting with it? — that’s where events come in

• Java, and therefore Swing, provides a well-defined API-
level mechanism for triggering, delivering, and, most
importantly, receiving events from the system —
whether generated by the user or by other processes
within a Java program

wait for next

event

User

input/

display

activity

branch to

appropriate

response

respond to event

The GUI Event Loop

All graphical user interfaces ultimately follow a control
flow called an event loop; in the early days of GUI
programming, this event loop was visible to the
programmer…but not anymore

main event loop
(internal to Swing)

Swing component

event type 1

event type 2

event type 3

event type 1 listener

event type 1 listener

event type 2 listener

event type 3 listener

event type 3 listener

event type 3 listener

Event Handlers are Like
Plug-Ins to the Event Loop

• Swing defines a wide variety of “things that can
happen, and to whom” during the main event loop

• We program our custom GUI behavior by defining
objects (“listeners”) that wish to be notified when
certain events occur

Events in Java

Events and event listeners follow a very specific scheme

Object that “fires” Event Type events

listener collection

public void add[Event Type]Listener([Event Type]Listener)
public void remove[Event Type]Listener([Event Type]Listener)

protected void fireSpecificEvent1(args)
protected void fireSpecificEvent2(args)
etc.

Event object: “[Event Type]
Event”

source
other event properties
extends java.util.EventObject

Event listener: “[Event Type]Listener”

interface

public void specificEvent1([Event Type]Event)
public void specificEvent2([Event Type]Event)
etc.

Object that “fires” Action events

listener collection

public void addActionListener(ActionListener)
public void removeAction]Listener(ActionListener)

protected void fireActionPerformed()

ActionEvent

source, ID, consumed,
actionCommand, modifiers,
when, paramString
java.awt.AWTEvent >
 java.util.EventObject

ActionListener

interface

public void actionPerformed(ActionEvent)

Events in Swing

• As before, we can’t cover absolutely every single
possible event type in Swing in class; instead, we look
at some highlights and hope you can pick up the rest
on your own

• It is useful to think of events in Swing as having two
broad categories:

1. Component- or widget-level events: events that are specific
to the functions of Swing components, but independent of
the physical, triggering mechanism

2. Input-level events: events that are bound to physical input
devices, such as the mouse or keyboard

Rolling Your Own

• Start by defining the core “event” that you are
implementing

• Define the event object class and event listener
interface for this event

• Define the methods within the event listener interface
that correspond to the events you want to “fire”

• Implement add/remove listener methods at the
objects that can generate your event

• Implement protected “fire” events for those objects

