
Memory Management:
Main Memory

• It’s all about bookkeeping

• The von Neumann model: fetch instructions from 
memory; decode instructions; possibly read or write 
data to or from memory; “rinse and repeat”

• In this model, we abstract memory completely as a 
linear, addressed array — the reality is more complex

• Common hardware elements: memory hierarchy 
(register/cache/main memory); hardware protection 
through base and limit registers

Address Binding

• When does a memory address in code become truly 
an address in physical memory?

• As in programming languages and compiler 
construction, “binding” refers to when a decision is 
made about a particular entity — in this case, memory

• Compile-time binding sets an absolute address in code

• Load-time binding sets addresses once, on load — code 
is therefore said to be relocatable

• Execution-time binding determines an address as 
instructions are executed — needs hardware support



Logical vs. Physical Addresses

• To facilitate execution-time binding, we must 
differentiate between addresses generated by the CPU 
(the logical or virtual address) from the actual address 
that gets accessed (the physical address)

• Current systems do this in hardware; that is, this 
mapping is not performed by the CPU but by a 
separate memory management unit (MMU)

• User code never sees the physical address — the 
process is completely transparent

Loading, Linking, and Sharing

Additional wrinkles before going deeper into main 
memory management:

• Programs seldom need all of their code in memory all 
the time, so dynamic loading is useful — only load code 
into memory as you need it

• Reusable code (e.g., system libraries) should not have 
to exist in every program (static linking); dynamic linking 
enables one in-memory copy for multiple processes

• Shared libraries extend dynamic linking to allow 
multiple versions of the same library to co-exist



Memory Allocation Basics

As with most operating system techniques, memory 
allocation started simple and grew in sophistication:

• Since multiprogramming really only runs a single 
process at a time, swapping has been used to keep 
processes in a backing store outside main memory

• Contiguous memory allocation devotes entire partitions of 
memory to processes; start with just the OS at the 
bottom at the stack at the top, with a large hole in the 
middle, then divide that hole among processes using 
some algorithm (e.g., first fit, best fit, worst fit)

Fragmentation

• A key issue with contiguous memory allocation that 
remains relevant today is fragmentation — essentially, 
wasted memory (allocated but unused)

• When there is enough total available memory but no 
single hole is large enough for a pending request, we 
have external fragmentation

• Since it is impractical to allocate partitions down to-
the-byte, we usually have a larger minimum allocation 
unit (or block) — when not all of that block is used by 
a process, we have internal fragmentation



Paging

• Paging is one of two complementary memory 
management techniques that are widely used in 
current systems (the other is segmentation, which we 
will discuss next)

• The main trick in paging: add a level of indirection 
between logical and physical addresses so that a 
process’s address space is (transparently) no longer 
physically contiguous

• Logical memory is divided into pages, and physical 
memory is divided into frames of the same size

• Logical addresses are now partitioned into a page 
number (or p for “page”) and a page offset (or d for 
“delta” or “displacement”) — since we’re talking bits, it 
should be easy to see that page/frame sizes are powers 
of 2, and for an m-bit logical address space, a page size 
of 2n results in 2m – n possible pages

• Every process gets a page table that maps a logical page 
to a physical frame — whenever the CPU uses a logical 
address, the page value of that address is converted 
into the corresponding frame value, as indicated by the 
page table; this is the final, physical address

• Behind the scenes, the OS tracks which frame 
corresponds to which page of which process, using a 
frame table data structure



Hardware Support for Paging

• Page-to-frame translation is done in hardware — it is 
part of a new CPU or architecture’s specifications

• For small page tables, hardware used to provide a 
dedicated set of registers

• With today’s huge memory spaces, the page tables 
themselves stay in main memory, with a page table base 
register (PTBR) pointing to it

• But main memory is slow, so we add a translation look-
aside buffer (TLB) — essentially a page table cache

Page Protection and Sharing

Paging can be used beyond just page-to-frame mapping to 
provide additional memory management features

• Memory protection: One or more bits can indicate read-
only, read-write, or execute-only pages; another valid-
invalid bit can indicate whether or not a page may be 
accessed by a process at all

• Shared pages: Shared libraries can be implemented via 
paging by letting multiple page tables point to the same 
frames — the ones with reentrant or pure code, such as 
what we would find in system libraries



Page Table Implementation: 
Hierarchical Paging

• Today’s large address spaces — 32 going on 64 bits and 
more — make a single-level page table impractical: 
either too many entries or pages that are too large 
(resulting in lots of internal fragmentation)

• Hierarchical paging “pages the pages” — page table 
becomes a tree of page entries, resulting in multiple 
levels of indirection

• 2-level paging is sensible for 32-bit spaces (e.g., 
10/10/12 results in 1024-entry tables with 4K pages); 
we need more for 64-bit

Hashed, Clustered, and 
Inverted Page Tables

• An alternative to a hierarchical page table is a hashed 
page table — a standard hash table based on the page 
number, leading to a linked list of page table entries 
(for all pages that hash to the same value)

• Another alternative is a clustered page table, where a 
single hash table entry actually consists of multiple 
page-to-frame mappings

• Finally, we have an inverted page table — instead of 
having one page table per process, we just keep one 
overall table, storing the process that “has” each frame



Segmentation

• Complementary to paging, segmentation divides a 
process’s address space by function or role, such as the 
stack, certain libraries, static variables, etc.

• Instead of a single linear array, a logical address space is 
now a collection of named segments; an individual 
address is now a tuple instead of a single value

• Translation to a physical address (which, of course, is 
still a linear space) is accomplished through a segment 
table: for each segment, the table stores a segment base 
address and a segment [size] limit

• The segment component of the logical address 
indicates the entry in the segment table, with the 
second component being the displacement (or offset, 
or delta) of the address within that segment

• Thus, the final physical address is segment base + 
displacement, with displacement < segment limit being 
required or else we get an addressing error trap

• Note how segmentation and paging can be combined 
— for example, in the Intel Pentium family, logical 
addresses use segmentation, but the linear addresses 
that they generate can be subsequently viewed as page 
+ displacement addresses, to be converted one more 
time into the final physical address



Main Memory Examples

• Intel Pentium D (IA-32)

Up to 16K segments per program of up to 4G in 
size, with 6 segment registers available (1 code, 1 
stack, 4 data)

Paging may be enabled, with page sizes of 4K, 2M, or 
4M, with separate TLBs for instructions and data

In 64-bit mode, segmentation is disabled, and the 
address space is completely flat/linear

• IBM PowerPC 970fx (a.k.a. “G5”)

Natively 64-bit processor, with 32-bit compatibility

Code can access a full 64-bit address space, which the 
MMU maps to a 42-bit physical address space

Segmentation is optimized with a segment lookaside 
buffer (SLB)

Page sizes of 4K or 16M with a unified TLB (combined 
instructions and data)


