
Processes

• A process is a program in execution

• Synonyms include job, task, and unit of work

• Not surprisingly, then, the parts of a process are 
precisely the parts of a running program:

Program code, sometimes called the text section

Program counter (where we are in the code) and other registers (data that CPU instructions 
can touch directly)

Stack — for subroutines and their accompanying data

Data section — for statically-allocated entities

Heap — for dynamically-allocated entities

Process States

• Five states in general, with specific operating systems 
applying their own terminology and some using a finer 
level of granularity:

New — process is being created

Running — CPU is executing the process’s instructions

Waiting — process is, well, waiting for an event, typically I/O or signal

Ready — process is waiting for a processor

Terminated — process is done running

• See the text for a general state diagram of how a 
process moves from one state to another



The Process Control Block 
(PCB)

• Central data structure for representing a process, 
a.k.a. task control block

• Consists of any information that varies from process 
to process: process state, program counter, registers, 
scheduling information, memory management 
information, accounting information, I/O status

• The operating system maintains collections of PCBs to 
track current processes (typically as linked lists)

• System state is saved/loaded to/from PCBs as the CPU 
goes from process to process; this is called…

The Context Switch

• Context switch is the technical term for the act of 
changing the currently running process — the 
aforementioned saving/loading of PCB data

• When a process must exit the running state (interrupt, 
I/O request, time slice expiration, etc.), a save state 
operation updates its PCB

• A state restore operation reads the PCB of the next 
running process into the system

• Textbook case of overhead: context switch does take 
time, but ultimately doesn’t do any “real” work



Scheduling Queues

• Only one running process per CPU — part of an 
operating system’s core tasks is to decide which 
process is “the one”…and the next one, and the next

• To assist in making these decisions, multiple scheduling 
queues exist — linked lists of PCBs — that correspond 
to the process state (thus, events that trigger state 
changes have corresponding queue changes)

Job queue: all processes in the system

Ready queue: processes that are waiting for a CPU

Device queues: one per I/O device, containing processes that are waiting for that device

Types of Schedulers

• Batch systems are unable to immediately run every 
single process submitted to it; these are spooled to 
secondary storage to await execution — deciding the 
next job to run from this pool is long-term scheduling

• Deciding among jobs already in memory for processing 
by the CPU is short-term or CPU scheduling

• Most systems today have a very high degree of 
multiprogramming, and so have no long-term scheduling 
at all; time-sharing results when the short-term 
scheduler enforces rapid switching among processes



Process Creation and 
Termination

• All processes have a unique identifier — the process 
identifier or pid for short

• The boot sequence typically leads to process 0, whose 
name varies according to the operating system; all 
other processes are created by this one

• Thus, all processes (except process 0 of course) also 
have a parent process ID (ppid)

• Parents may terminate their children, or processes may 
end/terminate on their own

APIs for Process Creation 
and Termination

Programming specifics for process creation and 
termination vary per OS, but they generally consist of:

• Function to create a new (child) process — this 
returns information about the child to the parent

• Function to wait for a child to finish or to continue 
execution concurrently

• Function to load a program (executable) for execution

• Function to end execution (willingly — we will discuss 
external termination later)



Interprocess Communication

• Processes aren’t isolated from each other — if 
desired, they can communicate, and facilitating 
interprocess communication (IPC) is another 
fundamental operating system service

• Two overall models:

Shared memory — processes are allowed to read/
write a section of memory

Message passing — processes send information blocks
(messages) to each other

IPC Issues

Things to consider when designing or implementing an 
IPC scheme:

• Buffer sizes (shared memory blocks, message passing 
queues) — unbounded or bounded

• Naming of message passing sources/destinations — 
direct (PID) or indirect (intervening abstractions, such as 
mailboxes or ports)

• The big one: synchronization — how to coordinate 
reads/writes to shared memory; should message 
passing be blocking or nonblocking



IPC Across Machines

Modern operating systems allow IPC across different 
hosts; because we cross machine boundaries, these 
methods follow the message passing model

• Sockets: communicate via machine address and port 
numbers; as the Internet evolved, well-known ports have 
been reserved for certain protocols

• Remote procedure call (RPC): instead of raw bytes, 
communication resembles (duh) a procedure call

• Remote method invocation (RMI): object-oriented RPC 
— objects are accessible over the network

RPC/RMI Mechanics

• Because we cross machine boundaries, RPC is 
semantically a pass-by-value call — data is necessarily 
copied over the network

• The translation of RPC arguments into a network 
message then back into arguments on the remote host 
has a specific term — marshalling

• RMI adds the notion of a remote object — the ability to 
hold a reference to an object on another machine; with 
remote objects, we are able to do a limited form of 
pass-by-reference, but on other remote objects only


