
The Joy of Types

• All programming information is ultimately represented
and manipulated as bit sequences…however, bit
sequences aren’t quite so natural for human beings, so
we have the notion of types

• Types provide context and limitations for what can or
cannot be done to the objects (in the generic sense) in
a program

Is “a + b” floating-point or integer addition? The types of “a” and “b” help answer this
question

Does it make sense to get the factorial of a file? Or to perform trigonometric functions
on a collection? Types help to filter these out too

• Type systems — definition and classification of types

• Type checking — rules that determine:

Type equivalence

Conversion and casts

Compatibility and coercion

Type inference

• Type catalog — records/structures, variants/unions,
arrays, strings, sets, pointers/recursive types, lists, files
and input/output

Overview of Type Concepts

• Type systems consist of:
A mechanism for defining types and associating them with language constructs

Rules for type equivalence, type compatibility, and type inference

• Types are assigned to: anything that has a value, and
anything that can refer to something that has a value

• Type equivalence: when do values have the same type?

• Type compatibility: under what context(s) can values of
given types be used?

• Type inference: given any expression, what is its type?

Type Systems

• Expressions vs. objects — the type of an expression is
not necessarily the type of the object to which it refers

• Subroutines are a distinct type in languages where they
are first- or second-class values

• Type checking enforces the language’s type system rules
A type clash is a violation of type compatibility rules

A language is strongly typed if it prohibits, in a way that can be enforced, the application of
operations on objects that are not meant to support them

A language is statically typed if it is: (1) strongly typed and (2) type checking can be
performed at compile time

• Seldom have absolute 100% static typing — generally, we mean “most of the time”

A language is dynamically typed if it delays type checking until run-time

• Dynamic typing is a form of late binding — types are not bound to objects until
virtually the moment that types become relevant

• Dynamic scope is associated with dynamic typing — after all, how can one check
types statically if one doesn’t know what an identifier refers to at compile time

• Polymorphism does not necessarily imply dynamic type checking: e.g., Java, Eiffel

Type Definition

• Type declaration vs. definition

Declaration: existence and scope of a type

Definition: description of a type

• Language design choice: separate or single construct
for type declaration and definition?

• Three perspectives on types: denotational, constructive,
and abstraction-based

• Denotational perspective: types as sets of values

A value is of a given type if it belongs to the set of
values that defines that type

Corresponds to the mathematical notion of domains

• Constructive perspective: types as either a built-in,
simple, or primitive type, or a composite of these types
(possibly arbitrarily nested) — the Composite design
pattern applied to types

• Abstraction-based perspective: types as interfaces —
types define a set of operations that may be performed

• The reality is that we mix and match these
perspectives as needed

“Primitive,” “Simple,” or
“Built-In” Types

• “Close to the hardware” — not much distance from
bit-level representations

• Booleans (a.k.a. logicals) represent true or false
Some languages like C, Perl, and JavaScript allow other expressions to evaluate as “true” or
“false” — in fact C and Perl have no separate boolean type per se, while JavaScript does

Instead of true or false, the Icon language uses success and failure — more general, in a way

Evaluates to False Evaluates to True

C zero anything else

Perl
non-zero number, non-empty string,

non-empty array, non-empty map
everything else

JavaScript
undefined, null, +0, –0, NaN,

empty string, false
everything else

• Characters represent individual symbols with human-
attached meaning

Traditionally single bytes (ASCII), now becoming two bytes (Unicode — ‘\u0000’ to ‘\u007f’
correspond to ASCII)

• Numbers include integers, reals (floating point)
Different “widths” may be supported (32-bit, 64-bit): traditionally implementation/platform
dependent, except in Java — Java specifies precision

Floating point alternatives: rationals (numerator, denominator), fixed point (implied decimal)

Signed vs. unsigned (cardinals in Modula-2) are sometimes distinguished

• Integers, booleans, characters, enumerations, and
subranges are discrete/ordinal types: countable domains,
clear successor/predecessor relationships

• Discrete, rational, real, and complex types are scalar or
simple types: directly represented values, neither
references nor composite

Enumeration Types

• Invented by Wirth in Pascal; emphasizes readability

type weekday = (sun, mon, tue, wed, thu, fri, sat);

Defines an order; allows use in enumeration-controlled loops

May be used to index arrays in some languages

• In other languages (C, Java < 1.5), enumerations are
syntactic labels for other types (integers, strings)

Allows cross-usage of “enumerations” and other literals (e.g., integers, strings)

“True” enumerations in Java < 1.5 were simulated through clever class definitions

Language-level enumeration available in Java ! 1.5, but internally implemented as a class
that follows a specific design pattern (in other words, syntactic sugar)

public enum Coin { penny(1), nickel(5), dime(10), quarter(25); ... }

Subrange Types

• Contiguous subsets of a discrete base or parent type

type test_score = 0..100;
type workday = mon..fri;

• Ada distinguishes between derived and constrained types

Derived types are a new, distinct type — not interchangeable with their base types

Constrained types are interchangeable

• Subrange types help to clarify the intent of program
code; a form of non-comment documentation

• Subrange types also facilitate automated range
checking or storage optimization

Composite Types

• a.k.a. constructed types: described by combining one or
more scalar or composite types

• Records are collections of fields of other types,
introduced by Cobol

Equivalent to mathematical tuples; the type itself corresponds to the Cartesian product of
the types of the fields

• Variant records represent overlapping fields — the final
type is a union of its named fields

• Arrays map an index type to a component type
Arrays of characters form strings, frequently given special treatment in many languages

• Sets represent unordered collections of a base type;
introduced in Pascal, and follows the mathematical
notion of sets closely

• Pointers are references to an object in that pointer’s
base type; generally, a pointer is an l-value

Basis of recursive types: types T that contain references to other objects of type T

• Lists are ordered collections of a base type, generally
defined by its head and its tail — the head is of the
base type, and the tail is another list

• Files or streams are structurally like arrays, but integrate
a notion of current position and display idiosyncrasies
due to physical I/O-bound behavior

• …we’ll examine these in detail later on

Orthogonality in Types

Analogous to orthogonality in expressions and
statements: how can type constructs be mixed and
matched with other type and language constructs?

• Languages may define an “empty” type for constructs
used solely for their side effects: void (C), unit (ML)

• Ability to use any discrete type to index an array, and
to use any other type for the array’s components,
instead of just integers and scalars respectively (Pascal,
in contrast to pre-ForTran 90)

• Subroutines as first-class values (several languages)

Special case: arbitrary blocks of code as first-class
values (Smalltalk, Perl, JavaScript, ML)

Functions as types are particularly evident in ML
(semantics of “curried” functions)

• Expressing values of any type (simple, composite) as
some literal (C/C++, Java, Perl, Ada, ML)

Anonymous classes in Java allow inclusion of behavior
(code) in addition to state (value)

