
Takeaway Notes: Closure and Nondeterminism
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1 Introduction

This writeup is meant to provide key takeaways regarding language derivations that
are closed over the set of regular languages (i.e., the languages that finite state
machines can recognize)—thus the inclusion of “closure” in the title. Said closure
is accomplished primarily via construction of NFAs from a base DFA or NFA, and
thus this serves as a further exploration of nondeterministic finite state automata.

This is largely a distillation of the textbook and online video material, but seen
through my individual lens in terms of emphasis and approach. Think of the text-
book, the videos, this writeup, and the class meetings as if they were four portholes
into the same subject. By exposing yourself to the same material in four different
ways, the hope is that you walk away from this in a way that fulfills the objectives
of the course.
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2 Key Concepts

Here, we will start using the name “regular language” to denote a certain category
of languages. This category is the set of all languages that finite state machines can
recognize. For now it’s just a name; we’ll eventually dig into it to say exactly what
it is about them that makes them “regular.”

The notion of closure comes from set theory and abstract algebra, describing
how some given set of entities can produce other entities strictly within the same
set. Numbers beget numbers, strings beget strings, and here, languages of a certain
category (regular languages) beget other languages within that category.

The following transformations/variations are said to be closed within the set of
regular languages:

• The reverse of a regular language

• The complement of a regular language

• The union of regular languages

• The intersection of regular languages

• The concatenation of regular languages

In other words, the reverse or complement of a regular language L is also a regular
language. The union, intersection, or concatenation of multiple regular languages
L1 . . . Ln is also a regular language.

2.1 Proof Approach

The process for proving these closures remains along the same lines as the approach
for showing that NFAs can handle the same languages as DFAs: show that there
is a DFA that recognizes the said transformation/variation of the language. The
existence of such a DFA shows that this transformation/variation is also regular,
thus upholding closure.

As it turns out, there is an algorithm that constructs a finite state machine for
each of these languages, given that the DFA for the original language(s) L or L1 . . . Ln

has been defined.
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2.2 “ε Moves”

Notably, some of the above algorithms don’t produce a DFA directly, but instead
produce an NFA. But that’s OK, because we already know that a DFA can always
be constructed from an NFA.

However, some of these constructions require one last tweak to our definition of
an NFA: we now need so-called ε moves. ε moves are state transitions on the empty
string : that means a machine can change state without consuming a character from
the input string.

The good news is that ε moves aren’t that hard to add to our formal definition.
Since this involves transitions, the change affects δ: for NFAs that have ε moves
(i.e., ε-NFAs), we can now say that δ may accept ε for its second argument (the one
traditionally reserved for a character in Σ). Non-ε-NFAs are easily represented by
saying that δ(q, ε) = ∅.

A clear-cut motivating example for ε moves is when constructing a finite state
machine that involves switching start and accepting states (e.g., reversing a lan-
guage). There can be only one start state, but any given finite state machine may
have multiple accepting states. These multiple accepting states are easily converted
into a single start state by designating this start state but giving it multiple ε state
changes to the original accepting states. Note also that this swap holds true whether
you are starting with a DFA or NFA. In both cases, you end up with an ε-NFA.

3 Important Skills

What should one be able to do with these concepts? Here are some key skillz:

• Work out how to construct a new NFA that recognizes a language that is
derivable from an original language L—this knowledge will fade over time (un-
less you become a theoretical computer scientist!), so let’s just say that over
the long haul, you just don’t forget that there’s some process for deriving an
NFA from another state machine which corresponds to deriving some regular
language from an original one

• Apply ε moves correctly, whether across a single or multiple transitions

• Construct a DFA from an ε-NFA (which mainly means that you can do the
above item correctly, over and over again)

Note that these correspond to what you may be asked to submit as course work for
this general topic.

3



4 Big Picture Points

Things you shouldn’t forget even years after taking this course:

• Many operations that “convert” one or more regular languages to another
are closed over the set of regular languages—i.e., such operations themselves
produce regular languages.

• In the most general sense, NFAs can be defined which can change state without
consuming an input character. As with the original expansion into NFAs, this
adds convenience but no additional power to finite state automata in general.

• Yet again, we define “power” here as the ability to recognize a language that
cannot be recognized by an earlier, “lesser” machine. So far, we have not yet
added a feature to our machines which constitutes this upgrade in power.

We will hold off on the extra power a little bit more, as we explore an idea that lives
in parallel to finite state automata: that of regular languages.
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