Takeaway Notes: Finite State Automata

Contents
1 Introduction 1
2 Basics and Ground Rules 2
2.1 Building Blockso 2
2.2 The Name of the Game 2
3 Deterministic Finite State Automata 3
3.1 li‘xbout that & 3
3.2 dLeadsto L. 4
4 Nondeterministic Finite State Automata 4
4.1 NFAs and DFAs are Equivalent! 4
4.2 TImplications of NFA-DFA Equivalency 5
4.3 The e-Transition 5)
5 Important Skills 5
6 Big Picture Points 6

1 Introduction

This writeup is meant to provide key takeaways regarding finite state machines or
automata. It is largely a distillation of the textbook and online video material,
but seen through my individual lens in terms of emphasis and approach. Think of
the textbook, the videos, this writeup, and the class meetings as if they were four
portholes into the same subject. By exposing yourself to the same material in four
different ways, the hope is that you walk away from this in a way that fulfills the
objectives of the course.

2 Basics and Ground Rules

2.1 Building Blocks

e An alphabet is a finite set of symbols. Symbols can be anything. Our conven-
tion for denoting an alphabet mathematically is .

e We concatenate symbols from ¥ into strings. Strings are finite in length.
Empty strings are denoted by e. The length of a string w is denoted by |w].

e X" denotes the set of all strings made up of symbols from > whose length is n.
¥0 = {e}. ¥* is the set of all all all strings made up of symbols from ¥. Some
fun equivalency games:

v =xuxtux?u...

yr=xtux?2uxiu...
Y =X0ust ={efust

e A language L is any set of strings (strings of finite length, but there may be
an infinite number of them) in 3. More formally, we can say that L is some
subset of X*.

2.2 The Name of the Game

We distill our notion of “computation” here to just recognizing whether some string
in ¥ belongs to a language L. The premise behind this distillation is that it “reduces”
the problem to something precise and straightforward, with the idea that if something
in this realm is already difficult to do, then everything else must be even more difficult
than that.

Similarly, although > can really consist of any number of symbols, most of the
examples we’ll see restrict ¥ to two symbols. This is done primarily to keep from
obligating ourselves to write out tons and tons of state transitions; it turns out that
working with two-symbol alphabets is sufficient to convey all of the key ideas in this
topic. Larger alphabets merely imply more of everything (states and state transi-
tions). It’s a classic case of the mathematical phrase “without loss of generality.”

3 Deterministic Finite State Automata

The intuitive notion behind a deterministic finite state automaton or machine (DFA)
is pretty straightforward. The trick is remembering how they translate formally, so
that theorems can be proven about them.

A DFA A is formalized as a tuple (this “tuple-ization” technique will be used
over and over again, so it’s worth remembering):

A= <Q7E757q0aF)
Yep, that’s a deterministic finite state machine. The symbols break down like this:

e () is A’s set of states

> is its alphabet

0 is the big one: it is A’s transition function. This is effectively the diagram
that we draw, but made completely formal and unambiguous

e (o is A’s start state; hope it’s obvious that ¢y € @

e F'is A’s accepting states; similarly as above, F' C @)

3.1 About that ¢

As stated above, there’s a lot more that we can say about . To define it further,
0 is a function (g, a) where ¢ is a state in) and a is a symbol in ¥. The value
0(q,a) is some other state p (also in @, of course) that represents the new state of
the machine if it is currently in state ¢ and receives the symbol a.

As human beings, it’s very hard to think about ¢ in this way, so instead we use
either state transition diagrams or transition tables to spell things out.

So “running” a DFA is about computing the value of § over and over again. We
start at go then take the input string one symbol at a time. This gives us §(qo, a).
Then we take the next symbol and compute §(5(qo,a),b). And so forth. We stop
when the latest 0 result is a state in F.

This repeated execution leads us to the notion of an extended transition function.
Instead of a state and a character, this function 5 takes a state and a string. Its
result is the state of the machine after “consuming” the string starting at a given
state.

3.2 § Leads to L

The “extended transition” concept makes it easy for us to formally state if a machine
“accepts” some input string w: w is accepted if 5(%, w) € F.

Thus, we can now formally define the language L of a DFA A = @, %, 0, qo, F,
written as L(A) (the “language of the machine A”):

L(A) = {w | é(qo,w) € F}

Set notation! Hope you remember that from past courses.

4 Nondeterministic Finite State Automata

A major extension of the way we can describe finite state automata is to introduce
nondeterminism. Conceptually, nondeterministic finite state automaton (NFA) can
be transition to multiple states given the same symbol. This creates the image of
having multiple “paths” through the machine for the same string. The NFA accepts
a string if a path to an accepting/final state simply exists.

The formal definition of an NFA is the same as that of a DFA except for the
output of 4. In an NFA, §(q,a) is a set of states rather than a single one. This set
of states is a subset of Q).

Because 0 is different for an NFA, then so is 5. For an NFA, 5 is the union of all
intermediate state subsets produced by ¢§ for a given string.

And thus, the language that is accepted by a given NFA now becomes:

L(A) = {w | 0(g0,w) N F # 0}

4.1 NFAs and DFAs are Equivalent!

NFAs make finite state machines much easier to define; however, a key finding in the
study of these machines is that a DFA can be constructed from any NFA. In other
words, they can all recognize the same set of languages. In other other words, NFAs
aren’t any more powerful than DFAs.

This is a big claim, and therefore it must be formally proven. The sketch of the
proof consists of the following steps:

1. State the algorithm that constructs a DFA out of an NFA (tl;dr the states in
the DFA consist of combinations of states from the NFA, representing where
the machine could be after receiving the next symbol in a string)

2. Show that for the machine D = (Qp, X, dp, qo, Fp) that emerges from N =
(Qn, X, 0N, qo, Fy) via this algorithm, L(D) = L(N)

3. l.e., R R
{w | dp(qo,w) € Fp} = {w | on(qo,w) N Fy # 0}

4.2 Implications of NFA-DFA Equivalency
Key points of this major finding:

e We are free to use NFAs to describe languages because we are assured that
there is a DFA out there which will accept the exact same language.

e We like this freedom because, in many cases, NFAs are easier to define. They
aren’t any more powerful, but they are certainly more convenient.

e The cost of DFA conversion is the number of states: in the worst case, an NFA
consisting of n states may blow up into a DFA of 2" states, due to the way the
constructive algorithm works.

4.3 The e-Transition

A significant NFA extension is the inclusion of the empty string € as one of the
arguments into the transition function §. i.e., These kinds of NFAs can change from
one state to another without reading the next symbol in the string. This is intuitively
sensible because NFAs can be in more than one state for the same input string
anyway. If this is already true, why wait to read another symbol in order to go to
the next state? e transitions simply add to the set of possible states that a machine
can be in for a given input string.

5 Important Skills

What should one be able to do with this thought framework? Here are some key
skillz:

e Define a DFA or NFA that will recognize some language L
e Infer the language L that is recognized by some DFA or NFA

e Prove a statement based on the formal definitions within this topic and/or a
specific DFA or NFA tuple

e Have an intuitive sense for what languages cannot be recognized by any DFA
nor NFA

Note that these correspond to what you are/will be asked to submit as course work
for this general topic.

6 Big Picture Points

Things you shouldn’t forget even years after taking this course:

e Finite state automata represent the simplest model of computation that has
been formally studied.

e As with all models of computation, finite state machines are equivalent to some
language (i.e., the language whose strings they accept).

e Nondeterminism adds convenience but not power to these machines.

And, looking ahead: keep an eye out for what extension/enhancement to the model
does put it over the top in order to recognize the next level of languages.

