
Takeaway Notes: Normal Forms and Pumping
Lemma for Context-Free Languages
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1 Introduction

In this set of takeaway notes, we look at two ideas, one new and one familiar: normal
forms and the pumping lemma for CFLs. Normal forms, in particular Chomsky
normal form (CNF), helps “standardize” a grammar (without loss of equivalency to
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the language it generates) in order to reason about it more easily. The pumping
lemma for CFLs performs the same function as the pumping lemma for regular
languages: it helps us prove whether a language is context-free.

2 Formal Definitions

2.1 Chomsky Normal Form

The intuition behind Chomsky normal form is straightforward: place a grammar
in a particular “format” such that it is easier to work with and to prove things
about. For a normal form to work (CNF isn’t the only one), we must ensure that
a normalized grammar still generates the same language as the original grammar.
If we can show this, we also assure that every context-free language has a grammar
that is in Chomsky normal form.

A grammar (V, T, P, S) is in Chomsky normal form if all of its production rules
are in one of these formats:

• A→ BC, where A,B,C ∈ V

• A→ a, where A ∈ V and a ∈ T

That’s it. Note that such a grammar cannot generate ε. However it can generate
anything else. Thus, for an arbitrary context-free language L, we say that L − {ε}
can be expressed as a CNF-compliant grammar.

The definition is straightforward enough; the trick is in converting any given
grammar into CNF. That requires a few additional concepts.

2.2 Converting to CNF

To make a CFL’s grammar “Chomsky-ready,” we must first perform three steps:

1. Eliminate ε productions: productions of the form A→ ε

2. Eliminate unit productions: productions of the form A→ B

3. Eliminate useless symbols: symbols that cannot be derived from the start
symbol

Once a grammar has eliminated these, we may still have production rules that do
not meet the two conditions for CNF. The final step is then the conversion of those
rules to one of the two forms.
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The aforementioned steps are recommended in the given order to minimize repeat
passes in the grammar, because the first two steps might generate more useless
symbols that would not have been caught had useless symbols been removed first.

2.2.1 ε-Productions

ε-productions (A → ε) are easy to spot but a little trickier to eliminate. The main
idea is that since the variable symbol involved can potentially go to nothing, then
everywhere that it appears we can substitute nothing. This creates new production
rules that are effectively the same as if we had “pre-performed” the ε-production in
advance.

2.2.2 Unit Productions

Unit productions are perhaps the trickiest ones to remove, but the idea is similar to
eliminating ε-productions: “pre-perform” these productions to produce new produc-
tions that skip the unit substitutions. The general approach for this (particularly
because it’s possible to have a cycle of unit productions) is to identify unit pairs in
a CFG—all pairs of symbols (A,B) such that A can generate B completely via unit
productions—and to include rules that go from the first symbol of the pair to the
non-unit productions that come from the second.

2.2.3 Useless Symbols

A symbol is useful if it is both generating and reachable. Thus, it is useless if it isn’t
one of those.

• A symbol X ∈ V ∪ T is generating if X
∗−→ w for some terminal string w.

• A symbol X ∈ V ∪ T is reachable if S
∗−→ αXβ for some α, β ∈ V ∪ T

Productions with useless symbols are simply taken away from the grammar. To min-
imize repeated “passes” over the grammar, productions with non-generating symbols
should be taken away first, then productions with non-reachable ones. For example,
with the grammar:

S → AB | aA→ b

If we try to remove non-reachable symbols first, then on that pass we remove noth-
ing because all symbols are reachable. Removing non-generating symbols will then
eliminate S → AB but than then makes A unreachable, requiring a repeat back to
the non-reachable cleanup step.
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2.2.4 Conforming to the Two Formats

Once the three cleanup steps are done, we may still have production rules consisting
of more than two variables, more than one terminal, or a mix of terminals and
variables. This is where the actual conversion to CNF takes place. In general, this
is done by inventing new variable symbols to represent substrings of the existing
productions, thus “clustering” the productions into just pairs of variables or single
terminals.

2.2.5 Proofs About Each Step

The validity of CNF and the process of converting to CNF must be proven at every
step. Thus, behind the scenes of each procedure and algorithm mentioned here is a
proof that said procedure or algorithm does not change the language of the grammar
that we are manipulating. These are elided in the takeaway notes but are part of
any full text on the theory of computation.

2.3 The Pumping Lemma for CFLs

CFLs have a pumping lemma that is analogous to the pumping lemma for regular
languages, and it serves a similar purpose: it allows us to prove, via contradiction,
that a given language is not context-free: given L is a CFL, there exists a constant
n such that if z ∈ L and |z| ≥ n, then z is of the form uvwxy under the following
conditions:

• |vwx| ≤ n

• vx 6= ε (i.e., at least one of v or x may not be empty)

• ∀ i ≥ 0, uviwxiy ∈ L

2.3.1 Intuition Behind the Lemma’s Proof

The proof of the lemma assumes that we have a CNF grammar for L, which is why
we needed to establish CNF first before going into the lemma. Because we know that
any context-free grammar can be rewritten in CNF, this assumption is valid and we
can proceed. We will only discuss the core insight behind the proof here; details are
elided and left to full texts on the theory of computation.

As with the core insight behind the regular language pumping lemma, we rely
on the pigeonhole principle. Recall that for the regular language version, we observe
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that a finite-state automaton with n states that accepts a string whose length is
greater than n must have repeated at least one state on the way to accepting that
string. If it repeats such a state, then it must be able to repeat that state over and
over again, as long as the string repeats the same sequence of characters that got it
to loop back to that repeated state.

For the CFL pumping lemma, we instead pigeonhole the number of variable sym-
bols in the CNF grammar. Let’s call this number of variables m; i.e., m = |V |
according to our grammar tuple notation. We now pigeonhole m in this way: be-
cause we have assumed that the grammar is in Chomsky normal form, then its parse
trees are binary at most. Thus, to yield a string of length 2m, the parse tree must
have at least m+ 1 levels. And if there are m+ 1 levels, then at least one of the m
variable symbols must have been repeated. If we choose the same set of productions
that got us “back” to the repeated variable, we would repeat the same two strings on
the left and right of that variable’s production rule (remember that in CNF, the only
rule we accept that has variables is of the form A→ BC). We can then choose that
sequence of productions over and over again—and that’s where we get our “pump.”

Thus, the n of the CFL pumping lemma is 2m where m = |V |. With than n, we
must be repeating a variable in our parse tree, and because we are repeating that
variable, we can repeat it indefinitely as long as we choose the same set of productions
for its left and right yields. If no pair of these repeatable strings (that keeps a string
in the language) can be found for some string z ∈ L where |z| ≥ n, then the parse
tree cannot exist for z and thus the language cannot be context-free.

2.3.2 Sample Use of the Lemma

Let’s show how the CFL pumping lemma can be used to show that L = 0k1k2k is
not context-free. First, we pick z = 0n1n2n where n is the n of the pumping lemma.

By the pumping lemma, z must be of the form uvwxy where the conditions of
the lemma are met. Thus, we can assert that |vwx| ≤ n.

Due to that maximum length, there are only two cases for vwx:

• vwx is completely contained within a single symbol (0, 1, or 2)

• vwx crosses two symbols (01 or 12)

In the case where vwx is completely contained within a symbol, either v or x
must be of the form ai where a ∈ {0, 1, 2}. In that case, pumping either v or x will
produce a string that is not in L.

In the case where vwx straddles two symbols (crossing either 0n1n or 1n2n), either
v or x is of the form ai where a is either in {0, 1} or {1, 2}. In that case, pumping
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either v or x will produce a string that is not in L. (there is also a trivial subcase here,
where v or x is of the form aibj where a and b are the symbols being straddled—note
again that pumping that string will break it out of L = 0k1k2k)

3 Related Ideas

We use the CFL pumping lemma as the jumping-off point to go to the next highest
category of languages, where like the jump from regular to context-free, we require
a new computational model and now study the characteristics of languages in that
level. This will lead us to the most advanced machine we can define—which therefore
makes it the very model that we now (currently?) have for all of computation.

4 Important Skills

For these takeaways, we want to be able to do the following:

• Perform the necessary cleanup steps that prepare any context-free grammar
for conversion into Chomsky normal form

• Use the CFL pumping lemma to show that a language is not context-free

5 Big Picture Points

Things you shouldn’t forget even years after taking this course:

• All context-free grammars can be converted into Chomsky normal form (CNF),
which is a context-free grammar whose parse trees are all binary.

• Thanks to CNF, we can derive a pumping lemma for context-free languages,
whose key insight is that for strings of a certain length, their parse trees must
have repeated variables along a given path, and if that variable has been re-
peated, then we should be able to repeat those productions indefinitely.
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