
Takeaway Notes: Turing Machines

Contents

1 Introduction 1

2 Central Ideas 2
2.1 There are More Problems Than Programs . . . . . . . . . . . . . . . 2
2.2 We Can Identify Specific Problems for Which Programs Do Not Exist 2
2.3 The Turing Machine is a Model for Computing That Can Show Un-

decidability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

3 Central Ideas, Formalized 3
3.1 The Formal Definition of a Turing Machine . . . . . . . . . . . . . . . 3
3.2 Instantaneous Descriptions (IDs) of a Turing Machine . . . . . . . . . 4
3.3 A Sample Turing Machine . . . . . . . . . . . . . . . . . . . . . . . . 4
3.4 Attempted Enhancements to the Turing Machine . . . . . . . . . . . 5
3.5 Equivalent Reductions of the Turing Machine . . . . . . . . . . . . . 5
3.6 The Languages of a Turing Machine . . . . . . . . . . . . . . . . . . . 6
3.7 The Universal Turing Machine . . . . . . . . . . . . . . . . . . . . . . 6

4 Important Skills 7

5 Big Picture Points 7

1 Introduction

In this set of takeaway notes, we generalize the notion of “membership in a language”
to the entirety of computing: for some question or problem, given some input, would
the answer be “yes” or ”no?” Observe that if we can interpret that problem as
a language where input that belongs to the language is the same as the input for
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which the problem’s answer is “yes” and input that does not belong to the language
is the same as the input for which the problem’s answer is “no,” then all computing
problems with “yes” or “no” answers are indeed equivalent to some language (i.e.,
some set of strings).

2 Central Ideas

2.1 There are More Problems Than Programs

If we now envision that a program—a finite string—represents some solution to a
problem (i.e., some mechanism that will tell us whether a given input yields the
answer “yes” or “no”), we would first realize that there are more “problems” than
there are “programs”—this is a diagonalization proof that is analogous to Cantor’s
proof of uncountable infinity.

Fortunately for us, the vast majority of these “problems” are not at all interesting
to us: they may as well be answering “yes” or “no” at random. So this assertion,
though initially shocking, turns out to not be quite the existential crisis that we may
have originally thought.

2.2 We Can Identify Specific Problems for Which Programs
Do Not Exist

This problem is the famous halting problem first identified (and proven to have no
program) by Alan Turing. It turns out, however, that “halting” is a MacGuffin: we
can actually come up with infinite variants of this problem (e.g., can a program tell
if another program prints “hello, world”?), all with generally the same proof that
they don’t exist.

The core “mind trick” in proving the halting problem lies in this fragment of
pseudocode. Assume that halts exists—i.e., we have access to a program (or func-
tion) that can tell whether another given program will stop. Now let’s say we have
a program X, written as follows:

program X(P) {

if halts(P) then {

while true

} else {

return

}
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}

Notice now that if we pass X to itself—i.e., we invoke X(X)—then we get a contra-
diction, because if X halts, then X will loop forever (while true), but if X does not
halt, then X will halt (return).

Problems that have this characteristic—i.e., no program exists that can defini-
tively answer “yes” or “no” for that problem—are said to be undecidable. And
undecidability, as it turns out, is the focus of much computing theory beyond the
introductory level.

2.3 The Turing Machine is a Model for Computing That
Can Show Undecidability

. . . And so far, no other model for computing has been shown to be more powerful
than the Turing machine. Or, if a Turing machine cannot solve a certain problem
(i.e., recognize a certain language), we can pretty much deem that problem to be
unsolvable—because there is no other machine that has been shown to solve problems
which a Turing machine cannot.

3 Central Ideas, Formalized

3.1 The Formal Definition of a Turing Machine

Not surprisingly, the formal definition of a Turing machine M is yet another tuple:

M = (Q,Σ,Γ, δ, q0, B, F )

where:

• Q is a finite set of states that the Turing machine may be in

• Σ is a finite set of possible input symbols to the machine

• Γ is the set of tape symbols that a Turing machine can “store”—and also,
Σ ⊂ Γ

• δ is (again!) a transition function. δ(q,X) takes a state q ∈ Q and a tape
symbol X ∈ Γ such that δ(q,X) = (p, Y,D) where:

1. p ∈ Q is the next state of the machine
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2. Y ∈ Γ is the symbol that the machine writes to the current location on
its tape

3. D is a direction, either L or R, that tells us in which direction the ma-
chine’s “head” moves on the tape—the machine always moves one step at
a time

• q0 ∈ Q is the start state of the machine

• B ∈ Γ (but not Σ) is the blank symbol that initially occupies all of the Turing
machine’s tape cells, except for a finite number of initial input symbols

• F ⊆ Q is the set of final or accepting states of the Turing machine

3.2 Instantaneous Descriptions (IDs) of a Turing Machine

Like PDAs, we need a special notation to precisely indicate the status of a Tur-
ing machine at any given time. As with PDAs, this notation is called the ID or
instantaneous description of the machine:

X1X2 · · ·Xi−1qXiXi+1 · · ·Xn

q is the current state of the Turing machine. It is positioned where the machine’s
tape head currently is, which in this notation is Xi. Note that to avoid confusion,
we assume that all symbols representing state are distinct from the tape symbols.

Finally, X1X2 · · ·Xn represents the portion of the tape between the leftmost and
rightmost nonblank symbols, unless the tape head is beyond either of these extremes.
In that case, contiguous Xks to the right or the left of q may be blanks, and i would
be either 1 or n.

3.3 A Sample Turing Machine

It should be noted that Turing machines aren’t really meant to be problem-solving
tools per se—they are abstractions for thinking about problem-solving primarily, not
for actually solving problems (we have programming languages for that!). Still, it is
useful to fully spec out an actual machine to get a feel for how it works.

Here is a machine that solves the problem of recognizing strings in the language
0n1n, n ≥ 1. True, this is context-free and does not need the full power of a Turing
machine to solve, but as you will see, the definition can get pretty involved so it’s
better to start small.
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First, like with all programs, it is best to imagine with this machine would do
informally, in order to solve the problem. We can thinking of it as “counting” the 0s
and 1s by marking them off as it encounters them. It would reach a final (accepting)
state if the counting matches up, then would just halt or hang in a non-accepting
state if it does match up. Because the tape is one-dimensional and movement is
either just one to the left or one to the right, the machine’s head would zigzag back
and forth over the tape.

Let’s start with the tuple:

M = ({q0, q1, q2, q3, q4}, {0, 1}, {0, 1, X, Y,B}, δ, q0, B, {q4})

Then of course we have the meat of it, the δ transition function:

Symbol
State 0 1 X Y B

q0 (q1, X,R) — — (q3, Y, R) —
q1 (q1, 0, R) (q2, Y, L) — (q1, Y, R) —
q2 (q2, 0, L) — (q0, X,R) (q2, Y, L) —
q3 — — — (q3, Y, R) (q4, B,R)
q4 — — — — —

Table 1: Transition function for a Turing machine that accepts {0n1n | n ≥ 1}

3.4 Attempted Enhancements to the Turing Machine

• Turing machines with finite data storage

• Multitrack Turing machines

• Multitape Turing machines

• Multidimensional Turing machines

• Non-deterministic Turing machines—these machines simultaneously make mul-
tiple moves for certain transitions (i.e., the result of δ is now a set and no longer
a single tuple. They recognize the same set of languages as deterministic Tur-
ing machines, but might do this faster—i.e. polynomial time vs. exponential
time, the basis for P vs. NP.
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3.5 Equivalent Reductions of the Turing Machine

• Turing machines with semi-infinite tapes

• Multistack pushdown automata (two are enough)

• Counter machines

3.6 The Languages of a Turing Machine

The languages that can be accepted by a Turing machine are called recursively enu-
merable languages. Undecidable languages, such as the “diagonalizaton language”
derived from a variant of Cantor’s proof of uncountable infinity, are considered non-
recursively enumerable.

However, within the category of recursively enumerable languages are a distinct
subdivision. Recursive languages are languages L = L(M) for some Turing machine
M such that:

1. If w ∈ L then M accepts w (i.e., it halts on an input of w in an accept state).

2. If w /∈ L then M eventually halts but not in an accept state.

Languages that do not have this property—meaning that M never halts on strings
that are not part of the language—are recursively enumerable but not recursive. The
problem is that “never halts” cannot be determined (the halting problem!)—what if
the machine is just taking a really really long time before halting?—so problems that
are representable by recursive languages are considered to be decidable. Otherwise,
they are undecidable. This, finally, is the formal definition of an “undecidable”
problem.

3.7 The Universal Turing Machine

If we think of a Turing machine itself as being representable by a string, then the
recognition of all strings that represent a Turing machine can itself be framed as a
language recognition problem. . . and thus can be thought of as itself having a Turing
machine that recognizes it. The machine that recognizes this language, notated as
Lu, is called the universal Turing machine, notated as U . Thus by our original
language notation from way back, Lu = L(U).

The exact form of Lu is an ordered pair (M,w) where M is the encoded machine
and w is a string that M accepts. Thus, if U accepts (M,w), that means that M
accepts w.
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3.8 P vs. NP

On a separate note, the study of languages and the acceptance of languages enters
into the area of tractability—i.e., how many steps , relative to the size of the input
string, does it take for a machine to accept or reject that string? Practically speaking,
we only consider polynomial-time problems as solvable. Exponential-time problems
take much longer much more quickly, to the point where we don’t consider them
practically solvable by a computer.

The class of problems that can be solved by a deterministic Turing machine in
polynomial time relative to the size of the input string is the class famously known as
P . The class of problems that can be solved by a nondeterministic Turing machine in
polynomial time is NP . And now we have the great unsolved problem of computer
science: is P = NP? It is clear that P ⊂ NP , because a deterministic Turing
machine is clearly a special case of a nondeterministic Turing machine. However, it
remains unknown whether every problem that a nondeterministic Turing machine
can solve in polynomial time has an equivalent deterministic Turing machine that
can also solve it in polynomial time (higher degrees are OK; they just can’t go
exponential).

There is a whole body of theory work that has gone into exploring this question.
Unfortunately, we cannot get there in the time remaining, so must leave that part
as a teaser for future studies of theory, if you remain interested.

4 Important Skills

The main skill in this section is the ability to “read” and “run” a given definition of
a Turing machine. Everything else is proofs or understanding proofs.

5 Big Picture Points
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