
CMSI 186
P R O G R A M M I N G L A B O R A T O R Y

Spring 2008

Program 3: Dynamic Programming
This program hopes to expose you to dynamic programming, a technique that facilitates a completely general-
ized and optimal version of the “make change” algorithm. Of note: the “programming” in “dynamic pro-
gramming” does not refer to the code that you write, but to the optimal solution (i.e., the “plan” or “pro-
gram”) that is sought by the problem.

Program to Write
Write a class called change.GoMakeChange that solves,
in a general, optimal manner (thus giving “Go” a
double meaning), the problem of making change
for a given currency amount using a given set of
coin denominations. The program’s output con-
sists of the optimal way for making that amount
using the given denominations. When no such way
exists, the program prints a message to that effect.
Invoking change.GoMakeChange looks like this:

java change.GoMakeChange denominations amount
denominations is a comma-separated list of positive
integers, while amount is the non-negative amount
of change to be made. Arguments that do not
conform to these constraints must be rejected with
an appropriate error message, including but not
limited to:
• Missing arguments
• Excess arguments
• Non-numeric arguments
• Any denomination ≤ 0
• Duplicate denominations
• Amount < 0
• Non-integral denominations or amount
The output of change.GoMakeChange may be either:
• “To make amount cents with denominations, use: n1

d1-cent coins, n2 d2-cent coins, n3 d3-cent coins,
…, and nk dk-cent coins.”

• “Sorry, but it is impossible to make amount cents
with denominations.”

…where amount, denominations, and d1…dk are based
on the user’s arguments, and n1…nk are the answers
computed by the program.

Design Notes
The util.IntTuple class, which represents an ordered
list of integers of some fixed cardinality, is crucial
to this program. A JavaDoc description of this
class can be found on the course Web site:

http://myweb.lmu.edu/dondi/spring2008/cmsi186/
program3-api

You must complete this class — as well as unit
tests, invokable from this class’s main() method —
before writing a single line of change.GoMakeChange.
Note that util.IntTuple must be a general-purpose inte-
ger tuple class — it should not “know” that it is
used to make generalized, optimal change.

Gotchas
• The denominations do not have to be sorted (and

your code should not have to sort them, either).
• A one-cent denomination is not required; thus,

the “no answer” case is certainly possible.
• There may be more than one optimal solution

(i.e., a tie); in this case, the program may display
any optimal solution.

Examples
• java change.GoMakeChange 2 — error message

(missing arguments)
• java change.GoMakeChange 9,10 –4 — error mes-

sage (amount < 0)
• java change.GoMakeChange 0,5,9 32 — error mes-

sage (denomination ≤ 0)
• java change.GoMakeChange 10,1,10,14 28 — error

message (duplicate denominations)
• java change.GoMakeChange 2,16,8 5 — “Sorry, but

it is impossible to make 5 cents with 2,16,8.”
• java change.GoMakeChange 4,1,9 12 — “To make

12 cents with 4,1,9, use: 3 4-cent coins, 0 1-cent
coins, and 0 9-cent coins.”

