CMSI 186

PROGRAMMING LABORATORY
Spring 2008

Program 3: Dynamic Programming

This program hopes to expose you to dynamic programming, a technique that facilitates a completely general-
ized and optimal version of the “make change” algorithm. Of note: the “programming” in “dynamic pro-
gramming” does not refer to the code that you write, but to the optimal solution (i.e., the “plan” or “pro-

gram”) that is sought by the problem.

Program to Write

Write a class called change. GoMakeChange that solves,
in a general, optimal manner (thus giving “Go” a
double meaning), the problem of making change
for a given currency amount using a given set of
coin denominations. The program’ output con-
sists of the optimal way for making that amount
using the given denominations. When no such way
exists, the program prints a message to that effect.

Invoking change. GoMakeChange looks like this:
Java change. GoMakeChange denominations amount

denominations is a comma-separated list of positive
integers, while amount is the non-negative amount
of change to be made. Arguments that do not
conform to these constraints must be rejected with
an appropriate error message, including but not
limited to:

e Missing arguments

 Excess arguments

» Non-numeric arguments

e Any denomination < 0

¢ Duplicate denominations

e Amount <0

 Non-integral denominations or amount

The output of change. GoMakeChange may be either:

o “To make amount cents with denominations, use: nq
di-cent coins, 72 dr-cent coins, 73 ds-cent coins,
..., and 7 dg-cent coins.”

» “Sorry, but it is impossible to make amount cents
with denominations.”

...where amount, denominations, and d...d are based
on the user’s arguments, and #;...7 are the answers
computed by the program.

Design Notes

The wutilInfTuple class, which represents an ordered
list of integers of some fixed cardinality, is crucial
to this program. A JavaDoc description of this
class can be found on the coutrse Web site:

http:/ | myweb.lmn.edu/ dondi/ spring2008 / cmsi1 86/
program3-api

You must complete this class — as well as unit
tests, invokable from this class’s wain() method —
before writing a single line of change. GoMakeChange.
Note that wtilInfTuple must be a general-purpose inte-
ger tuple class — it should 7o “know” that it is
used to make generalized, optimal change.

Gotchas

» The denominations do 7o have to be sorted (and
your code should not have to sort them, either).

e A one-cent denomination is #of required; thus,
the “no answer” case is certainly possible.

e There may be more than one optimal solution
(i.e., a tie); in this case, the program may display
any optimal solution.

Examples

o java change.GoMakeChange 2 — error message
(missing arguments)

o java change.GoMakeChange 9,10 —4 — error mes-
sage (amount < 0)

o java change. GoMakeChange 0,5,9 32 — error mes-
sage (denomination < 0)

o java change.GoMakeChange 10,1,10,14 28 — error
message (duplicate denominations)

o java change.GoMakeChange 2,16,8 5 — “Sorry, but
it is impossible to make 5 cents with 2,16,8.”

o java change.GoMakeChange 4,1,9 12 — “To make

12 cents with 4,1,9, use: 3 4-cent coins, 0 1-cent
coins, and 0 9-cent coins.”



