
CMSI 186-01, 186-04
P R O G R A M M I N G L A B O R A T O R Y

Spring 2015

Assignment 0423
For our second-to-last paradigm, we revisit the old change-making problem with a new approach, known as
dynamic programming. Of note: the “programming” in “dynamic programming” does not refer to the code
that you write, but to the optimal solution (i.e., the “plan” or “program”) that is sought by the problem. 

Outcomes
This assignment will affect your proficiency mea-
sures for outcomes 1a–1c, 2a–2c, and 3a–3f.

For Submission
Finish the Java program MakeOptimalChange by
implementing its core method:

 public static Tally makeOptimalChange(
 int[] denominations, amount)

The returned Tally object should consist of the
optimal way for making the given amount using the
given denominations. When no such way exists, the
returned value should be the special constant
Tally.IMPOSSIBLE (also already defined for you).
To demonstrate the correctness of your implemen-
tation, add test cases to the supplied test harness.
That test harness includes only the trivial example
of standard change making using USA currency.
The rest of the program has been written for you,
both to decrease the time required to finish the
assignment and to provide a demonstration of
“how the teacher would have done it.” As with
previously supplied code, feel free to study what’s
in there.
Invoke MakeOptimalChange like this:

java MakeOptimalChange denominations amount

The denominations argument is a comma-separat-
ed list of integers without spaces between them;
amount is the integer amount for which to make
change. Sample runs are included below (to save
space, the usage message is included only if it is the
only output shown by the program):
$ java MakeOptimalChange 2
Usage: java MakeOptimalChange <denominations> <amount>
 - <denominations> is a comma-separated list of
 denominations (no spaces)
 - <amount> is the amount for which to make change

$ java MakeOptimalChange huh wut
Denominations and amount must all be integers.

$ java MakeOptimalChange 9,10 -4
Change cannot be made for negative amounts.

$ java MakeOptimalChange 0,5,9 32
Denominations must all be greater than zero.

$ java MakeOptimalChange 0, 5, 9 32
Usage: java MakeOptimalChange <denominations> <amount>
 - <denominations> is a comma-separated list of
 denominations (no spaces)
 - <amount> is the amount for which to make change

$ java MakeOptimalChange 10,1,10,14 28
Duplicate denominations are not allowed.

$ java MakeOptimalChange 10,1,14 28
28 cents can be made with 2 coins as follows:
- 0 10-cent coins
- 0 1-cent coins
- 2 14-cent coins

$ java MakeOptimalChange 2,16,8 5
It is impossible to make 5 cents with those
denominations.

$ java MakeOptimalChange 4,1,9 12
12 cents can be made with 3 coins as follows:
- 3 4-cent coins
- 0 1-cent coins
- 0 9-cent coins

$ java MakeOptimalChange 25,10,5,1 99
99 cents can be made with 9 coins as follows:
- 3 25-cent coins
- 2 10-cent coins
- 0 5-cent coins
- 4 1-cent coins

Implementation Notes
• It’s all about the mantra given in class, given in

class, given in class (no shortcuts). Make sure you
have the mantra down cold.

• The denominations do not have to be sorted
(and your code should not sort them, either).

• A one-cent denomination is not required; thus,
the “no answer” case is certainly possible.

• There may be more than one optimal solution
(i.e., a tie); in this case, the program may display
any optimal solution.

How to Turn It In
Submit your code to your GitHub repository under
the folder optimal-change. As always, don’t forget to
commit as you go.

