
CMSI 371-01
C O M P U T E R G R A P H I C S

Spring 2016

Assignment 0204
This initial assignment is meant to get you into a development groove with 2D canvas graphics, as well as
mark your first step toward an animated 2D scene. Note that for outcomes that cover proficiency in both
2D and 3D, we stick to a maximum of | for now. 

Outcomes
This assignment will affect your proficiencies for
outcomes 1a, 2a (max |), 3a (max |), and 4a–4f.

Not for Submission
Don’t limit your canvas exposure solely to the
functions/properties that you specifically use in
your drawings—spend some “big picture” time
with the MDN canvas tutorial and reference pages
(links available at the course website). You might
be pleasantly surprised by how much you can do.

For Submission
First, envision an animated 2D scene that you’d like
to render. Storyboard or script it so that you can
get a concrete idea of what you’d like to see.
Then, write at least three (3) canvas functions that
draw three distinct objects in your scene. Known as
sprites, they can be things, characters, vehicles,
buildings, whatever you like. We say “at least” be-
cause, really, the more you do, the better you’ll get,
and we don’t want to artificially limit your practice
time (or your creativity). Give your sprites some
internally movable characteristics like limbs or fa-
cial expressions (see the next section).
Use standard control structures like loops and
conditionals as needed; don’t feel limited to just
canvas functions and properties. We are assuming
that you can figure these out in JavaScript on your
own, but if you’re really stuck then ask me.
Consult the MDN canvas website extensively so
that you don’t miss out on its full feature set.

Parameterize the Sprites
Your functions’ drawing commands should be pa-
rameterized by a separate model object. That is, your
functions should accept an object parameter whose
properties affect how something gets drawn. For
example, if you decide to draw a cartoon character,

you can supply an object with a property that states
how open or closed its eyes are. Or, you might
draw a box with a hinged lid, and its object might
state how open, in degrees, the lid should be.

Draw Around the Origin, Transform to Test
One set of characteristics that you shouldn’t parame-
terize is whole-object movement, rotation, or scal-
ing. These can be done independently by using the
translate, scale, and rotate functions.
Center your drawing code around the origin. You
can invoke translate before calling your sprite
function to draw it at the desired location. Similar-
ly, scale and rotate will resize and turn your en-
tire sprite, respectively. You may play with these in
your demonstration pages (described next).

Standalone and Combo Demonstrations
Define your sprite functions in separate JavaScript
files (e.g., lion.js, clown.js, and circus.js). Because these
functions are intended for reuse, yes, this time you
are allowed to define them within a top-level-scope
container object. For encapsulation, it remains rec-
ommended that you define the functions inside an
anonymous function that is called immediately.
Test/demonstrate your functions by (1) creating
one HTML file per sprite, using an inline script
element to call your sprite functions, and (2) creat-
ing a combo.html file which loads all of your sprite
scripts and draws them all on a single canvas.
In case you’re keeping score, this all means that, if
you define n sprites, you should end up with n
JavaScript files and n + 1 HTML files.

How to Turn It In
Commit your work under sprites. Remember that
“committing” doesn’t just mean “submitting,” but
progressively saving what you do so that you can
recover prior code as needed! And, don’t forget
those descriptive commit messages!

